ECE 300
Signals and Systems
Homework 6

Due Date: Friday April 21 at 2:30 PM Exam 2, Tuesday April 25

Reading: K \& H, pp. 145-161, 202-215.

Problems:

1. Assume $g(t)$ is a periodic function with period $T_{o}=2$, where $g(t)=1-t^{2}$ for $-1 \leq t \leq 1$. $g(t)$ has Fourier series representation

$$
g(t)=\frac{2}{3}+\sum_{k \neq 0}-2 \frac{(-1)^{k}}{k^{2} \pi^{2}} e^{j k \pi t}
$$

a) Write (explicitly) the integral required to compute the average power in $g(t)$. (Go beyond just writing the power definition.) Do not solve the integral.
b) The power in $g(t)$ is $8 / 15 \mathrm{~W}$. What fraction of the average power in $g(t)$ is contained in the DC (average) term plus the first three harmonics?
c) Assume $g(t)$ is the input to a system that eliminates all signals except those with frequencies between 3.75 and 4.25 Hz . Determine an expression $y(t)$ for the output of this system. Since the input signal is real, your output signal must be real!
2. A periodic signal $x(t)$ is the input to an LTI system with output $y(t)$. The signal $x(t)$ has period 2 seconds, and is given over one period as

$$
x(t)=e^{-t} \quad 0<t<2
$$

$x(t)$ has the Fourier series representation

$$
x(t)=\sum_{k} \frac{0.4323}{1+j k \pi} e^{j k \pi t}
$$

The system is an ideal lowpass filter that eliminates all signals with frequency content higher than 1.25 Hz .
a) Find the average power in $x(t)$.
b) Determine an expression for the output, $y(t)$. Your expression for $y(t)$ must be real.
c) Determine the average power in $y(t)$.
d) Plot the spectrum (magnitude and phase) for $x(t)$. Include the DC through second harmonic. Accurately label your plot.
3. Assume $\quad x(t)=t^{2} \quad-\pi \leq t \leq \pi$ with Fourier Series representation

$$
x(t)=\sum_{k} a_{k} e^{j k t}
$$

where

$$
a_{k}=\left\{\begin{array}{cc}
\frac{\pi^{2}}{3} & k=0 \\
\frac{2(-1)^{k}}{k^{2}} & k \neq 0
\end{array}\right.
$$

a) Assume $x(t)$ is the input to a system that eliminates all signals with frequencies outside the range 0.5 to 0.7 Hz . What is the output of the system $y(t)$ and what fraction of the average power in $x(t)$ is in $y(t)$? (Note: your answers must be real, no $e^{j a}$ terms.)
b) Assume $x(t)$ is the input to a system that eliminates all signals with frequencies in the range 0.5 to 0.7 Hz . What is the output of the system $y(t)$ and what fraction of the average power in $x(t)$ is in $y(t)$?
4. $\mathrm{K} \& \mathrm{H}$, Problem 5.1. Use the example we did in class to get the Fourier series coefficients for part c.
5. K \& H, Problem 5.3 (very easy)
6. $\mathrm{K} \& \mathrm{H}$, Problem 5.12. Note that $y(t)=x(t)-x(t-1)$. You need to write c_{k}^{y} in terms of c_{k}^{x}.
7. K \& H, Problme 5.13 (very easy)
8. The output of a LTI system, $y(t)$, has the following spectrum:

The system transfer function, $H\left(k \omega_{o}\right)$, has the following spectrum:

Assume all angles are multiples of 45 degrees.
a) Determine (sketch) the spectrum (magnitude and phase) of the input to the system, $x(t)$.
b) If $x(t)$ has the fundamental period $T=2$ seconds, determine an analytical expression for $x(t)$ in terms of sine, cosines, and constants.

