ECE 300
Signals and Systems

Homework 5

Due Date: Friday April 7 at 2:30 PM
Reading: K \& H, pp. 145-161.

Problems:

1. Simplify each of the following into the form $c_{k}=\alpha(k) e^{-j \beta(k)} \operatorname{sinc}(\lambda k)$
a) $c_{k}=\frac{e^{j 7 k \pi}-e^{-j 2 k \pi}}{k \pi j}$
b) $c_{k}=\frac{e^{-j 2 \pi k}-e^{-j 5 \pi k}}{j k}$
c) $c_{k}=\frac{e^{j 5 k}-e^{j 2 k}}{k}$

Scrambled Answers $c_{k}=3 \pi e^{-j \frac{7 \pi k}{2}} \operatorname{sinc}\left(\frac{3 \mathrm{k}}{2}\right), c_{k}=3 e^{j\left(\frac{7}{2} k+\frac{\pi}{2}\right)} \operatorname{sinc}\left(\frac{3 k}{2 \pi}\right), c_{k}=9 e^{j \frac{5}{2} k \pi} \operatorname{sinc}\left(k \frac{9}{2}\right)$
2. Find the Fourier series representation for the signal indicated using hand analysis. Clearly indicate the values of ω_{0} and the c_{k}. Hint: Draw the signal, and then use the sifting property to calculate the c_{k}. Hint: If you understand how to do this, there is very little work involved.

$$
x(t)=\sum_{p=-\infty}^{\infty} \delta(t-3 p)
$$

3. For the periodic square wave $x(t)$ with period $T_{o}=0.5$ and

$$
x(t)\left\{\begin{array}{cc}
1 & 0 \leq t<0.25 \\
-1 & 0.25 \leq t<0.5
\end{array}\right.
$$

show that the Fourier series coefficients are given by

$$
c_{k}=\left\{\begin{array}{ccc}
\frac{-2 j}{k \pi} & k & \text { odd } \\
0 & k & \text { even }
\end{array}\right.
$$

where $x(t)=\sum_{k} c_{k} e^{j k 4 \pi t}$
5. K \& H, Problem 4.9. For part c you should get $c_{k}^{v}=c_{k-1}^{x}$, use Euler's identity for part d.
6. K \& H, Problem 4.12 parts \mathbf{a} and \mathbf{b} only. Write the integral as the sum of two integrals (with zero as the midpoint). Change variables to make the limits on the integrals the same.
7. A signal $x(t)$, which has a fundamental period of 2 seconds, has the following spectrum (all phases are multiples of 45 degrees)

a) What is $x(t)$? Your expression must be real.
b) What is the average power in $x(t)$?
c) Sketch the single sided power spectrum for $x(t)$.
8. A signal $x(t)$, which has a fundamental period of 3 seconds, has the following spectrum (all phases are multiples of 45 degrees)

a) What is $x(t)$? Your expression must be real.
b) What is the average power in $x(t)$?
c) Sketch the single sided power spectrum for $x(t)$.
9. (Matlab Problem) A useful way of presenting information about the Fourier series representation of a signal is a single sided power spectrum, which tells us how the signal is distributed in frequency. To plot the single sided power spectrum, we just plot the power terms $\left|c_{0}\right|^{2} \quad 2\left|c_{1}\right|^{2} \quad 2\left|c_{2}\right|^{2} \quad \ldots \quad 2\left|c_{N}\right|^{2}$ versus the corresponding frequency $\begin{array}{llllll}0 & \omega_{0} & 2 \omega_{0} & \ldots & N \omega_{0} \text {. Since the fundamental frequency } \omega_{0} \text { is common to all of the }\end{array}$ frequency terms, we often just plot $\left|c_{0}\right|^{2} \quad 2\left|c_{1}\right|^{2} \quad 2\left|c_{2}\right|^{2} \ldots \quad 2\left|c_{N}\right|^{2}$ versus $0 \quad 1 \quad 2 \quad \ldots \quad N$. You are to write a function in Fourier_Series.m to plot the single sided power spectrum of the signal. The arguments to the function should again be c_{0} and the array
$c=\left[c_{1} c_{2} \ldots c_{N}\right]$. Utilize the stem command in Matlab to do the plotting. You may want to use the Matlab function length to determine the length of c. You may need to use the figure function so you can plot both the Fouier series (time-domain) plot and the power spectrum plot in two different windows. Plot the single sided power spectrum for each of the following signals utilizing $\mathrm{N}=10$ terms. The y-axis should be labeled Average Power, the x-axis labeled Harmonic and the graph should be titled One Sided Power Spectrum.

$$
\begin{gathered}
f_{1}(t)=e^{-t} u(t) \quad 0 \leq t<3 \\
f_{2}(t)= \begin{cases}t & 0 \leq t<2 \\
3 & 2 \leq t<3 \\
0 & 3 \leq t<4\end{cases} \\
f_{3}(t)=\left\{\begin{array}{cc}
0 & -2 \leq t<-1 \\
1 & -1 \leq t<2 \\
3 & 2 \leq t<3 \\
0 & 3 \leq t<4
\end{array}\right.
\end{gathered}
$$

