ECE 300
Signals and Systems

Homework 6

Due Date: Tuesday October 13, 2009 at 5:15 PM
Problems:

1. Assume $x(t)$, which has a fundamental period of 2 seconds, has the following spectrum (all phases are multiples of 45 degrees)

a) What is $x(t)$? Your expression must be real.
b) What is the average value of $x(t)$?
c) What is the average power in $x(t)$?
2. Assume $x(t)$ has the spectrum shown below (the phase is shown in radians) and a fundamental frequency $\omega_{o}=2 \mathrm{rad} / \mathrm{sec}$:

a) What is $x(t)$? Your expression must be real.
b) What is the average value of $x(t)$?
c) What is the average power in $x(t)$?
d) What is the average power in the second harmonic of $x(t)$?
3. Simplify each of the following into the form $c_{k}=\alpha(k) e^{-j \beta(k)} \operatorname{sinc}(\lambda k)$
a) $c_{k}=\frac{e^{j 7 k \pi}-e^{-j 2 k \pi}}{k \pi j}$
b) $c_{k}=\frac{e^{-j 2 \pi k}-e^{-j 5 \pi k}}{j k}$
c) $c_{k}=\frac{e^{j 5 k}-e^{j 2 k}}{k}$

Scrambled Answers $c_{k}=3 \pi e^{-j \frac{7 \pi k}{2}} \operatorname{sinc}\left(\frac{3 \mathrm{k}}{2}\right), c_{k}=3 e^{j\left(\frac{7}{2} k+\frac{\pi}{2}\right)} \operatorname{sinc}\left(\frac{3 k}{2 \pi}\right), c_{k}=9 e^{j \frac{5}{2} k \pi} \operatorname{sinc}\left(k \frac{9}{2}\right)$

4. For the periodic signal shown above, with period $T=4$
a) Determine the fundamental frequency ω_{0}.
b) Determine the average value.
c) Determine the average power in the DC component of the signal.
d) Determine an expression for the expansion coefficients, c_{k}. You must write your expression in terms of the sinc function, and possibly a leading phase term.

