ECE 300 Signals and Systems Homework 6

Due Date: Tuesday October 13, 2009 at 5:15 PM

Problems:

1. Assume x(t), which has a fundamental period of 2 seconds, has the following spectrum (all phases are multiples of 45 degrees)

a) What is x(t)? Your expression must be real.

- **b)** What is the average value of x(t)?
- **c)** What is the average power in x(t)?

2. Assume x(t) has the spectrum shown below (the phase is shown in radians) and a fundamental frequency $\omega_o = 2 \text{ rad/sec}$:

a) What is *x*(*t*)? Your expression must be real.

- **b)** What is the average value of x(t)?
- **c)** What is the average power in x(t)?
- d) What is the average power in the second harmonic of x(t)?

3. Simplify each of the following into the form $c_k = \alpha(k)e^{-j\beta(k)}\operatorname{sinc}(\lambda k)$

a)
$$c_k = \frac{e^{j7k\pi} - e^{-j2k\pi}}{k\pi j}$$

b) $c_k = \frac{e^{-j2\pi k} - e^{-j5\pi k}}{jk}$
c) $c_k = \frac{e^{j5k} - e^{j2k}}{k}$

Scrambled Answers $c_k = 3\pi e^{-j\frac{7\pi k}{2}} \operatorname{sinc}\left(\frac{3k}{2}\right)$, $c_k = 3e^{j(\frac{7}{2}k+\frac{\pi}{2})} \operatorname{sinc}\left(\frac{3k}{2\pi}\right)$, $c_k = 9e^{j\frac{5}{2}k\pi} \operatorname{sinc}\left(k\frac{9}{2}\right)$

- **4.** For the periodic signal shown above, with period T = 4
- **a)** Determine the fundamental frequency ω_0 .
- **b)** Determine the average value.
- c) Determine the average power in the DC component of the signal.

d) Determine an expression for the expansion coefficients, c_k . You must write your expression in terms of the **sinc** function, and possibly a leading phase term.