ECE 300 Signals and Systems

Exam 2 26 October, 2009

This exam is closed-book in nature. You are not to use a calculator or computer during the exam. Do not write on the back of any page, use the extra pages at the end of the exam. You must show your work to receive credit for a problem.

Problem 1	/ 30
Problem 2	/25
Problem 3	/ 20
Problem 4	/ 10
Problem 5	/ 15

Exam 2 Total Score: _____ / 100

1. Impulse Response (30 points)

For each of the following systems, determine the impulse response h(t) between the input x(t) and output y(t). Be sure to include any necessary unit step functions. For full credit, simplify your answers as much as possible.

a)
$$y(t) = \int_{-\infty}^{t-2} e^{-(t-\lambda)} x(\lambda-2) d\lambda + e^{-t} x(t)$$

b)
$$2\dot{y}(t) + y(t) = x(t-1)$$

c) Determine the impulse response for the following system

d) If the response of a system to a step of amplitude *A* is given by

$$s(t) = A[1 + e^{-t/\tau}]u(t)$$

determine the **unit** impulse response of the system. (*Do not just guess the answer, you will probably be wrong, and besides, you need to show your work!*)

2. Fourier Series (25 points)

The periodic function x(t) is defined over one period ($T_0 = 5$ seconds) as

$$x(t) = \begin{cases} 2 & -2 \le t \le 1\\ 0 & 1 \le t \le 3 \end{cases}$$

Determine the complex Fourier series coefficients, c_k by evaluating the appropriate integral.

Be sure to simplify your answer as much as possible and use a <u>sinc</u> function if appropriate.

3. (20 points) A periodic signal has the Fourier series representation $x(t) = \sum_{k=-\infty}^{k=\infty} c_k^x e^{jk^2t}$. This signal is the input to an LTI system, and the (steady state) output of the system is

$$y(t) = 4 + 4\cos(4t + 30^\circ) + 6\cos(6t + 30^\circ)$$

Fill in the following table:

k	$ c_k^x $	$ H(jk\omega_0) $	$\measuredangle c_k^x$	$\measuredangle H(jk\omega_0)$
0	2		180°	
1	3		-45°	
2	1		45°	
3	0.5		-30°	

If you cannot determine a necessary value, leave the table entry blank.

4. (10 points) Assuming the system input $x(t) = \sum_{k=-\infty}^{k=\infty} c_k^x e^{jk\omega_0 t}$ and output $y(t) = \sum_{k=-\infty}^{k=\infty} c_k^y e^{jk\omega_0 t}$ are related through the LTI system $\dot{y}(t) + 2y(t-2) = 6x(t-3)$

a) Determine the relationship between c_k^x and c_k^y .

b) Determine the *continuous* transfer function $H(j\omega)$ between the input and the output.

5) (15 points) The periodic signal x(t) has the Fourier series representation

$$x(t) = 2 + \sum_{k=-\infty}^{k=\infty} \frac{1}{1+kj} e^{jk3t}$$

x(t) is the input to an LTI system (a high pass filter filter) with the transfer function

$$H(j\omega) = \begin{cases} 0 & |\omega| < 5\\ 3e^{-j2\omega} & |\omega| > 5 \end{cases}$$

The steady state output of the system can be written as

$$y(t) = ax(t-b) + c + d\cos(e(t-b) + f)$$
.

Determine numerical values for the parameters a, b, d, e and f

Some Potentially Useful Relationships

$$E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^{2} dt = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$
$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^{2} dt$$

$$e^{jx} = \cos(x) + j\sin(x) \qquad j = \sqrt{-1}$$
$$\cos(x) = \frac{1}{2} \left[e^{jx} + e^{-jx} \right] \qquad \sin(x) = \frac{1}{2j} \left[e^{jx} - e^{-jx} \right]$$

$$\cos^{2}(x) = \frac{1}{2} + \frac{1}{2}\cos(2x) \qquad \sin^{2}(x) = \frac{1}{2} - \frac{1}{2}\cos(2x)$$
$$\operatorname{rect}\left(\frac{t - t_{0}}{T}\right) = u\left(t - t_{0} + \frac{T}{2}\right) - u\left(t - t_{0} - \frac{T}{2}\right)$$