ECE 300
Signals and Systems

Homework 6

Due Date: Tuesday October 16, 2007 at the beginning of class

Exam 2, Thursday October 18, 2007

Problems:

1. Assume $x(t)$ has the spectrum shown below (the phase is shown in radians) and a fundamental frequency $\omega_{o}=2 \mathrm{rad} / \mathrm{sec}$:

Assume $x(t)$ is the input to a system with the transfer function

$$
H(\omega)=\left\{\begin{array}{cc}
e^{-j \omega} & 1 \leq|\omega|<3 \\
2 e^{-j 2 \omega} & 3<|\omega|<5 \\
0 & \text { else }
\end{array}\right.
$$

Determine an expression for the steady state output $y(t)$. Be as specific as possible, simplifying all values and using actual numbers wherever possible.
2. ZTM, Problem 3-16.
3. The output of a LTI system, $y(t)$, has the following spectrum shown on the left, while the system transfer function, $H\left(k \omega_{o}\right)$, has the spectrum shown on the right. Assume all angles are multiples of 45 degrees.

a) Determine (sketch) the spectrum (magnitude and phase) of the input to the system, $x(t)$.
b) If $x(t)$ has the fundamental period $T=2$ seconds, determine an analytical expression for $x(t)$ in terms of sine, cosines, and constants.
4. Assume two periodic signals have the Fourier series representations

$$
x(t)=\sum X_{k} e^{j k \omega_{0} t} \quad y(t)=\sum Y_{k} e^{j k \omega_{0} t}
$$

For the following system (input/output) relationships:
a) $y(t)=b x(t-a)$
b) $y(t)=b \dot{x}(t-a)$
c) $y(t)=b x(t) \cos \left(\omega_{o} t\right) \quad$ (Answer: $\left.Y_{n}=\frac{b}{2}\left(X_{n-1}+X_{n+1}\right)\right)$
d) $\ddot{y}(t)+\frac{2 \varsigma}{\omega_{n}} \dot{y}(t)+\frac{1}{\omega_{n}^{2}} y(t)=K x(t)$
i) write Y_{k} in terms of the X_{k}
ii) If possible, determine the system transfer function $H(j \omega)$
iii) A system must be both linear and time-invariant to have a transfer function. If you cannot determine the transfer function, indicate which system property is not satisfied (L or TI).
5. Assume $x(t)$ has the Fourier series representation $x(t)=\sum X_{k} e^{j k \omega_{0} t}$ and fundamental period T_{o}. The function $y(t)$ is related to $x(t)$ through the relationship $y(t)=x\left(\frac{t}{b}\right)$.
a) Determine the period of $y(t)$ in terms of T_{o} (the period of $x(t)$) and fundamental frequency for $y(t)$ in terms of ω_{o} (the fundamental frequency for $x(t)$)
b) Set up the integral to determine the Fourier series coefficients Y_{k} in terms of the parameters determined in part a (the integral should be centered at 0), and determine how Y_{k} is related to X_{k}
c) Starting from the relationship $x(t)=\sum X_{k} e^{j k \omega_{o} t}$ and making a simple substitution, show how we can determine the results from part b.

This problem demonstrates that compression or expansion of a signal does not change the Fourier series coefficients, it only changes the fundamental frequency.

