\qquad

ECE 300
 Signals and Systems

Exam 3
6 November 2007

NAME

\qquad

This exam is closed-book in nature. You may use the provided table of common Fourier Transform pairs and propterties. You may use a calculator for simple calculations, but not for things like integrals. You must show your work to receive credit!

Exam 3 Total Score: \qquad / 100

Name \qquad CM \qquad

1. (25 points) Finding the energy in a given bandwidth

For the signal $x(t)$ with spectrum shown below:

Determine the percentage of the total energy in $x(t)$ between 20 and 60 radians $/ \mathrm{sec}$.
\qquad

2. (30 points) System analysis with the Fourier Transform

Consider a linear time invariant system with impulse response given by

$$
h(t)=\frac{3}{2 \pi} \operatorname{sinc}\left(\frac{\mathrm{t}-2}{2 \pi}\right)
$$

with input

$$
x(t)=\frac{2}{\pi} \operatorname{sinc}^{2}\left(\frac{\mathrm{t}-3}{\pi}\right) \cos (t-3)
$$

The output of the system is $y(t)$. Show all of your work and draw a $\mathbf{B O X}$ around your final answer.
a) Determine $X(\omega)$.
b) Sketch the spectrum of $X(\omega)$ (magnitude and phase) accurately labeling the axes and important points.
c) Determine $H(\omega)$.
d) Sketch the spectrum of $H(\omega)$ (magnitude and phase) accurately labeling the axes and important points.
e) Determine $y(t)$, the output of the system.

Name \qquad CM
3. (25 points) Fourier Series of a Periodic Signal

The following set of questions refer to the signal below

(a) What is the fundamental frequency of $x(t)$ in $(\mathrm{rad} / \mathrm{s})$?
(b) Find an expression for the Fourier Series Coefficients, c_{k}, of $\mathrm{x}(\mathrm{t})$. Simplify your answer as much as possible.

Name CM

4. (20 points) Properties of the Fourier Transform

Show that if a signal, $x(t)$, is real and even, then the Fourier Transform of the signal, $X(\omega)$, is also real and even.

Name __ CM

Name __ CM

Some Potentially Useful Relationships

$$
\begin{gathered}
E_{\infty}=\lim _{T \rightarrow \infty} \int_{-T}^{T}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|x(t)|^{2} d t \\
P_{\infty}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t \\
e^{j x}=\cos (x)+j \sin (x) \quad j=\sqrt{-1} \\
\cos (x)=\frac{1}{2}\left[e^{j x}+e^{-j x}\right] \quad \sin (x)=\frac{1}{2 j}\left[e^{j x}-e^{-j x}\right] \\
\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x) \quad \sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x) \\
\operatorname{rect}\left(\frac{t-t_{0}}{T}\right)=u\left(t-t_{0}+\frac{T}{2}\right)-u\left(t-t_{0}-\frac{T}{2}\right)
\end{gathered}
$$

