
ROSE-HULMAN INSTITUTE OF TECHNOLOGY
Department of Electrical and Computer Engineering

EC 300 Signals and Systems Fall 2006

MATLAB Scripts and Functions

Lab 2
Mark A. Yoder, Bruce A. Ferguson, Robert D. Throne

Objectives
There are two purposes in this lab. The first is to learn to write program files in MATLAB. The
second is experimentation with sounds, in particular, to see how sound changes as it is passed
through a system. While working through this lab you should learn many of the commands we
will be using throughout the quarter. In addition, you will learn to create MATLAB programs,
which we will use, reuse, and modify throughout the term. Use the help command often and
early. Specifically, you should achieve the following:

• Learn the purpose of MATLAB scripts and functions (aka “m-files”)
• Learn to create a script file for performing repeated operations
• Learn to properly graph data from various sources

Pre-Lab

Download the program linear_systems_and_sounds.m and the data file simdata.txt
from the class website

Notes on Using MATLAB
MATLAB can be used in two different ways – through the command line interface and using
MATLAB scripts. This second lab focuses on the use of MATLAB programs.

The second method of interfacing is by writing MATLAB programs called scripts or “m-files”.
These are programs written in MATLAB’s command language, the same as is used in the
command window. In the last lab, you typed a sequence of commands in a specific order to
achieve some more complex result (such as plotting sinusoids). Each command had a specific
purpose, and the order was important. However, one big problem with the method used in that
lab was that you could not save the sequence of commands that you used. MATLAB programs
allow you to save a sequence of commands for reuse and modification.

The usual structure of a MATLAB program is similar to that of other programming languages: a
main program is written (filename.m), and this program can call functions saved in other files
(function_name.m). The main program is where you organize your work into a coherent flow.
Functions are used to program repeated command sequences, so that your main program can be
neater and smaller. Every command you type in the command line interface window is actually a
MATLAB function. Both the main program and functions are called m-files, but they have
slightly different structures.

It is suggested that you use the MATLAB script editor to create and modify your m-files. The
editor can be accessed from inside MATLAB (“File → New → M-File”). Be sure to save the file

 Page 1 of 8

EC 300 Signals and Systems Fall 2006

before you run it. If you do not, MATLAB will use the previous version of the file which it has
stored in memory. Simply type the filename (without the “.m”) from the command line to run
the program. MATLAB references the script (program) only by its filename, so choose a name
that has meaning. (Seventeen files named “testx” make for a confusing lab exercise!)

The files you create and save are stored in the directory shown in the “current directory”
window just above the command window. Be sure to create a directory for your ECE 300
labwork, and navigate to that directory using the browse button (ellipses - “…”) to the right of
the current directory window.

MATLAB can access any file stored in its path variable. The path is a list of directories that
MATLAB has been told to look into to find commands and files. When you type a command
burgerflip in the command window, MATLAB looks through its path to find a file named
“burgerflip.m”, and then executes it.

Finally, when you save a function, MATLAB will know the function only by its filename. Even if
your function definition in the first line of the m-file has something different listed as the
command name, the filename in which you store the function is MATLAB’s official reference. So
when you call the function from either the command window or an m-file, you must use the
name of the file the function is stored in. It is obviously good practice to make both the file
name and the function definition line use the same name.

1. Script file basics

 (a) Use the MATLAB editor (“File → New → M-File”) to create a program file called

sintest.m containing the following lines:

t = -2:0.05:3;
x = sin(2*pi*0.789*t); % plot a sinusoid
plot(t,x), grid on
title(‘Test Plot of Sinusoid’)
xlabel(‘Time (s)’);

Save the file. (MATLAB cannot access your programs or functions until they are saved from
the editor.)

Creating a program file in this fashion allows for easy storage of a number of commands as a
MATLAB program. The program file is also called an M-File or a script. The program will be
stored in the current directory indicated in the MATLAB window.

Run your function from MATLAB by typing its name (sintest) at the MATLAB prompt
(note that sintest must reside in MATLAB’s search path). Verify that the program
produces the expected results.

(b) You have now created your first MATLAB program! Type type sintest at the command
prompt to see the file you have created.

 Page 2 of 8

EC 300 Signals and Systems Fall 2006

 (c) Edit sintest.m to add a line containing the “hold on” function (type help hold for

more information), followed by another plot command to add a plot of
0.5*cos(2*pi*0.789*t) to the plot created above. Add a final line to your program
containing “hold off”. Note that you must save sintest.m in order for MATLAB to access
the updated program.

Instructor Verification (see last page)

2. MATLAB Functions

MATLAB commands typed at the command line interface are simply functions. In this exercise
we will learn to create various types of functions.

 (a) Create a simple function with no arguments. Type the following lines and save them in a

file called greeting.m. Save the file, and test it at the command line. This function is
just a small program similar to your main program, with one major difference.

 function greeting
 disp (‘Hello world!’)
 test_variable = 3.14159

Note that the first line of the function file begins with the word function followed by the
function name. This first line differentiates a function from a script (regular program) – a
script does not contain the function line. It is important that you make the function name
the same as the filename you save it in.

An important difference between a script and a function is how they handle “local variables”.
For example, note that running your sintest script causes the variables t and x to appear
in the base workspace (see them listed in the upper left pane of the MATLAB window), but
your greeting function does not cause test_variable to appear there, even though it
prints to the command window. Read the help for the global function, and explain in your
lab notebook the difference between local variables, global variables, and the base
workspace.

This type of function simply performs an operation. It does not have any inputs, and
produces no outputs.

 Page 3 of 8

EC 300 Signals and Systems Fall 2006

3. Presenting Data Graphically

Often in lab you will have three types of data that you will want to plot on the same plot,
Analytic (from a mathematical analysis), Simulation (from MATLAB, SIMULINK or PSpice), and
Lab Data (measured in lab). Suppose a process is to be modeled, and the model verified. Your
analysis says the data should fit:

x(t) = sin(2π440t + π/2)

Next suppose you run a simulation of the process being modeled, and the result of this
simulation is the data in the file “simdata.txt” available on the course webpage. Within the file,
the first line is a comment line. In the subsequent lines, the first value is x, the second is the time
(in seconds) that x was measured. Type help fileformats to learn how to read in data
from this type of file.

Finally you measure the following data in lab:

Lab Data Time (ms)
+1.07 -4.17
-0.38 -3.55
-0.82 -2.92
+0.74 -2.30
+0.72 -1.67
-0.72 -1.05

 (a) Create a single plot showing all of your data using a MATLAB script. Your script should

perform the steps listed below. Save your script as dataplot.m.

 (b) First, evaluate the equation at the correct times and store the results in an array called, e.g.,

xxAna (for Analytic).

 (c) Read in the data from the simulation results file, and store the data in the array test. Note

that the array test contains two vectors. We will access the two vectors by breaking test
into x and t arrays using:

 xxSim = test(:,1); % Be sure you understand this notation!
 ttSim = test(:,2);

 (d) Store the lab data in two arrays, e.g. xxLab and ttLab, by typing it in by hand.

 (e) Finally, plot all three on the same plot using:
 plot(ttAna, xxAna, ttSim, xxSim, '--', ttLab, xxLab, 'x')

 (f) Add a legend using:

 Page 4 of 8

EC 300 Signals and Systems Fall 2006

 legend('Analytic', 'Simulation', 'Lab Data');

(g)Label your plot using xlabel, ylabel, and title. (You can get π by entering “\pi”.)

Put your name in the title. Your plot should look something like:

Note the time axis is in ms, not in seconds!

Instructor Verification (see last page)

Note: We have shown you the above format because it is an industry standard to
plot Analytic data as a solid line, Simulation data as a dashed line, and to plot
individual Lab Data as points, not as a continuous line. You are expected to
follow this convention in later labs and courses.

 Page 5 of 8

EC 300 Signals and Systems Fall 2006

4. Experimentation with Sound

The MATLAB program linear_systems_and_sounds.m allows you to specify an input signal
(lines 11-12) and system (line 24), and listen to how the sound changes as the signal passes
through the system. We will use the sounds produced to try to identify the systems as linear
or nonlinear. Recall from class that a system is linear if and only if an input signal at
frequency f produces an output signal at frequency f . The phase angle and amplitude
between the input and output and output may change, but the frequency cannot. Just think
about how transfer functions affected periodic signals when you were using phasors to
represent sinusoids- the transfer function could change the magnitude and phase but not the
frequency of the input signal. Note that we can only hear sounds when the speaker is
vibrating.

a) Using the code as is (i.e. with y=x), investigate how the frequency of the sinusoidal input
signal affects the sound of the signal. Specifically, describe the sound you hear for input
signal frequencies f0 of 200, 1000, 5000, and 10000 Hz.

b) Now change the system so the output is zero, i.e., y = 0*x (this will make sure the y vector
is the correct length). What do you hear, if anything?

c) Now change the system so the output is y=0*x+10; What do you hear? How fast (at what
frequency) is the speaker vibrating?

d) For each of the mathematical models of systems in the following table, assume x is a
periodic signal with frequency 200 Hz. For each of these models, determine if the
mathematical model of the system is linear or not, and if you would classify the system
models as linear or not based on listening to the input and output. Explain any discrepancies
between your classification based on the mathematical model and what you hear. Discrete-
time solutions for models (l) through (n) are included in the code, and are commented out.
Uncomment the correct lines when you need to run these models. Fill in the following table
and include it in your lab notebook. For x(t) small, some useful Taylor series expansions are :

[] 1() c c cf x a bx a ca b−= + ≈ + x

() 1axf x e ax= ≈ +

() sin(()) ()f x ax t ax t= ≈

() log() log() bf x a bx a
a

= + ≈ + x

 Page 6 of 8

EC 300 Signals and Systems Fall 2006

System Mathematical

Model

Linear

Model? (Y/N)

Sounds/Looks

Linear?(Y/N)

Comments

a 1()
2 ()

y t
x t

=
+

b 1() ()2
10

y t x t=
+

c () sin(2 ())y t x t=

d ()() sin
10
x ty t ⎛ ⎞= ⎜ ⎟

⎝ ⎠

e () | () |y t x t=

f () 1 ()y t x t= +

g ()() x ty t e=

h ()
10()

x t

y t e=

i () log(1.1 ())y t x t= +

j ()0.2() 10.1 10 ()y t x t= +

k 0.2()() 10.1
10
x ty t ⎛ ⎞= +⎜ ⎟

⎝ ⎠

l () () ()y t ay t bx t+ =

m 2() () ()y t ay t bx t+ =

n 1 () () () ()y t x t y t x t
b

+ =

 Page 7 of 8

EC 300 Signals and Systems Fall 2006

Report
Record the results of all of your work in your lab notebook. Tape any printout (graphs, for
example) into the notebook as specified in the Lab Manual for the course. Be sure that all
members of your lab group sign the lab notebook, and hand in one notebook per group at the end
of lab (both members must keep up-to-date lab notebooks).

Lab 02 Introduction to MATLAB
Instructor Verification Sheet

Paste this page in your laboratory notebook along with your other lab data and observations.

Name ___ Date of Lab: __________________

Part 1(c) Make sure your plot is properly presented.

Verified: ___ Date/Time: __________________

Part 3(g) Present your plot. Tape your resultant plot in your lab notebook.

Verified: ___ Date/Time: __________________

 Page 8 of 8

