ECE 300
Signals and Systems
Homework 3
Due Date: Thursday September 22 at 1 PM Exam \#1, Monday September 26
Reading: K \& H, pp. 114-128.

Problems

1. K \& H, Problem 3.16 parts a, c, and e. Do these both analytically and graphically. You only need to plot the results for part a.
2. K \& H, Problem 3.19. You need to think a little bit here about causality.
3. K \& H, Problem 3.20.
4. K \& H, Problem 3.22. You need to think again about causality. I would use graphical convolution. You should get $y(t)=t^{2}-12 t+40$ for $4 \leq t \leq 6$.
5. $\mathrm{K} \& \mathrm{H}$, Problem 3.26. (most of this one is pretty easy)
6. $\mathrm{K} \& \mathrm{H}$, Problem 3.31 parts \mathbf{a} and \mathbf{b} only. This is pretty easy. You will have a differential equation for $h(t)$ to solve (without Maple, use an integrating factor!)
7. $K \& H$, Problem 3.29. This one is a bit tricky. For part a, you need to recognize that the signal just before the integrator is $\frac{d y(t)}{d t}$. Write a differential equation relating $y(t)$ to $x(t)$. Next, let the input be the delta function and the output be the impulse response. You will have a simple differential equation you need to solve (without Maple, use an integrating factor!). You should ultimately get $h(t)=\left\{\begin{array}{cc}e^{-t} & 0 \leq t \leq c \\ 0 & t>c\end{array}\right.$
For part b, just use the definition of convolution. You should have one answer for $t \leq c$ and another for $t>c$.
