Name ______ Mailbox _____

ECE-205 Exam 2 Winter 2015

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 1	/13
Problem 2	/13
Problem 3	/20
Problem 4	/30
Problem 5	/24
Total	

Name Mailbox

1) (13 points) Fill in the non-shaded part of the following table. You do not need to show any work.

	Linear? (Y/N)	Time Invariant? (Y/N)	BIBO Stable? (Y/N)
$y(t) = \int_{-\infty}^{t+1} \lambda^2 x(\lambda) d\lambda$			
$y(t) = 3 + \int_{-\infty}^{t} e^{-(t-\lambda)} x(\lambda) d\lambda$			
$\dot{y}(t) + \cos(t) y(t) = 3x(t)$			
$y(t) = \dot{x}(t) + 2x(t)$			
y(t) = x(t)			
$y(t) = \ln(x(t) + 1)$			
$y(t) = \cos(2x(t+1))$			

2) (13 points) A linear and time-invariant system with the following input x(t) produces the output y(t) below:

If the following new input $\tilde{x}(t)$ is fed in, sketch the corresponding system output. (*Hint: Note that* $\tilde{x}(t)$ *is a linear combination of* x(t))

3) (20 Points) Simplify the following as much as possible. Be sure to include any necessary step functions.

a)
$$y(t) = \delta(t-1) * \delta(t+1)$$
 (Note: * denotes the convolution)

b)
$$y(t) = \int_{-\infty}^{t+1} \lambda \cdot \delta(\lambda - 3) d\lambda$$

c)
$$y(t) = \int_{t-1}^{\infty} \delta(\lambda) \delta(t-\lambda) d\lambda$$

For the remaining parts (d) and (e), suppose a signal x(t) is given by the following:

- d) Determine $x(t)\delta(t-4)$
- e) For what value(s) of t_0 is $x(t)\delta(t-t_0) = 0$?

4) (30 points) Consider a linear time invariant system with impulse response given by

$$h(t) = t[u(t+2) - u(t-1)]$$

The input to the system is

$$x(t) = [u(t-1) - u(t-2)] - 2[u(t-3) - u(t-5)]$$

These two functions are shown below:

Using graphical evaluation, determine the output y(t) Specifically, you must

- Flip and slide h(t), **NOT** x(t)
- Show graphs displaying both $h(t \lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute y(t). Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t-\lambda)$ but must contain the actual functions.

Time (sec)

- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!

5) (**24 Points**) An LTI system has input, impulse response, and output as shown below. Determine numerical values for the parameters *a-j*. Note that parameters *a-f* correspond to *times* (not equally spaced, these are located where the slopes change), and *g-i* correspond to amplitudes.

Hints:

- Note that the output is not drawn to scale, it just represents the general shape of the output.
- A good way to check your answer is to flip and slide one of them, then flip and slide the other one.
- It is probably much easier to get the times correct than the amplitudes.

Name	Mailbox

Name	Mailbox

Name	Mailbox