\qquad

ECE-205

Exam 1

Winter 2015

Calculators can only be used for simple calculations. Solving integrals, differential equations, systems of equations, etc. does not count as a simple calculation.

You must show your work to receive credit.

Problem 1	/15
Problem 2	/30
Problem 3	/10
Problem 4	/10
Problem 5	/15
Problem 6	/20

Total \qquad
\qquad Mailbox \qquad

1) ($\mathbf{1 5}$ points) Assume we have a first order system with the governing differential equation

$$
5 \dot{y}(t)+2 y(t)=x(t) .
$$

The system has the initial value of 0 , so $y(0)=0$. The input to this system is

$$
x(t)=\left\{\begin{array}{cc}
0 & t<0 \\
3 & 0 \leq t<2 \\
1 & t \geq 2
\end{array}\right.
$$

Determine the output of the system in each of the above time intervals. Simplify your final answer as much as possible and box it.
\qquad Mailbox \qquad
2) ($\mathbf{3 0}$ Points) For the following differential equations the initial conditions are $y(0)=\dot{y}(0)=0$

Determine the solution to each of the following differential equations and put your final answer in a box. Be sure to use the initial conditions to solve for all unknowns. You must show all your work to receive credit.
a) $\ddot{y}(t)+3 \dot{y}(t)+2 y(t)=x(t), \quad x(t)=6 u(t)$
b) $\ddot{y}(t)+6 \dot{y}(t)+13 y(t)=2 x(t), \quad x(t)=13 u(t)$
\qquad
\qquad
3) (10 Points) The following graphs showing the response of two different first order systems to a step input (top graph) and due only to initial conditions (bottom graph). Estimate the time constants of each system. (The time constants are different for each of the systems.)

Name \qquad Mailbox
4) ($\mathbf{1 0}$ points) Using the integrating factor method, determine the expression of the response $y(t)$ for the following system:

$$
\dot{y}(t)=2 t \cdot y(t)+e^{t^{2}} x(t) .
$$

The initial condition is $y(0)=1$ with $t_{0}=0$. Simplify your answer as much as possible.

Name \qquad Mailbox \qquad
5) (15 points) We can write $y(t)=G x(t)+C$ for the following op-amp circuit. Determine expressions for G and C.

Careful: Be sure to account for the 5V voltage source at the positive terminal of the first op-amp.

Name \qquad Mailbox \qquad
6) (20 Points) Determine the governing $2^{\text {nd }}$ order differential equation for the following circuit. The output should be the voltage across the capacitor, $v_{C}(t)$.

Hint: Determine two expressions for the voltage $V^{*}(t)$ and then eliminate this voltage.

Name
Mailbox

