ECE-205 Practice Quiz 8 (no Tables, Calculators, or Computers)

Problems 1 and 2 refer to the following transfer function $H(s)=\frac{2 s+1}{(s+1)^{2}+4}$

1) For this transfer function, the corresponding impulse response $h(t)$ is composed of which terms?
a) $e^{-t} \cos (2 t), e^{-t} \sin (2 t)$
b) $e^{-2 t} \cos (t), e^{-2 t} \sin (t)$
c) $e^{-t} \cos (4 t), e^{-t} \sin (4 t)$
d) $e^{-4 t} \cos (t), e^{-4 t} \sin (t)$
2) The poles of the transfer function are
a) $2 \pm \mathrm{j}$
b) $-2 \pm j$
c) $-1 \pm 2 \mathrm{j}$
d) $-1 \pm 4 j$

Problems 3 and 4 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[1+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

3) The number of (asymptotically) maginally stable systems is a) 0 b) 1 c) 2 d) 3
4) The number of (asymptotically) unstable systems is
a) 0
b) 1
c) 2
d) 3
5) Which of the following transfer functions represents a (asymptotically) stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} \quad G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s} \quad G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but G_{c} b) only G_{a}, G_{b}, and G_{d} c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}

Problems 6 and 7 refer to the following impulse responses of six different systems

$$
\begin{aligned}
& h_{1}(t)=\left[t e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=\left[2 e^{-2 t}+t^{3} \sin (t)\right] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

6) The number of (asymptitcally) unstable systems is
7) The number of (asymptotically) marginally stable systems is
a) 1
b) 2
c) 3
d) 4
a) 1
b) 2
c) 3
d) 4

Problems 8 and 9 refer to a system with poles at $-2+5 \mathrm{j} .-2-5 \mathrm{j} .-10+\mathrm{j},-10-\mathrm{j}$, and -20
8) The best estimate of the settling time for this system is
a) 2 seconds
b) 0.4 seconds
c) $4 / 5$ seconds
d) 0.2 seconds
9) The dominant pole(s) of this system are
a) $-2+5 j$ and $-2-5 j$
b) - $10+\mathrm{j}$ and $-10-\mathrm{j}$
c) -20
10) Which of the following transfer functions represents a (asymptotically) stable system?

$$
\begin{array}{lll}
G_{a}(s)=\frac{s-1}{s+1} & G_{b}(s)=\frac{s}{(s+1)} & G_{c}(s)=\frac{s}{s^{2}-1} \\
G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} & G_{e}(s)=\frac{(s-1-j)(s-1+j)}{(s+2)^{2}} & G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}
\end{array}
$$

a) all but G_{c} b) only G_{a}, G_{b}, and G_{d} c) only G_{a}, G_{d}, and G_{f} d) only G_{d} and G_{f}
e) only G_{a} and G_{d}

For problems 11-15, consider the signal flow graph representation of the following block diagram.

11) The path is a) $1 \quad$ b) $G \quad$ c) H d) $G H \quad$ e) none of these
12) The loop is a) 1
b) G
c) H d) GH
e) none of these
13) The determinant (Δ) is a) 1
b) $1-G H$
c) $1+G H$
d) none of these
14) The cofactor is a) 1
b) G c) H
d) $G H \quad$ e) none of these
15) The transfer function is
a) 1
b) G
c) GH
d) $\frac{G}{1-G H}$
e) $\frac{G}{1+G H}$

For problems 16-19, consider the signal flow graph representation of the following block diagram.

16) How many paths are there?
a) 0
b) 1 c) 2
d) 3
e) 4
17) How many loops are there?
a) 0
b) 1
c) 2
d) 3
e) 4
18) The determinant (Δ) is
a) 1
b) $1-\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$
c) $1+\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$
d) none of these
19) The transfer function is a) 1
b) $\frac{H_{3} H_{5}+H_{1} H_{2} H_{3}}{1+H_{2} H_{3} H_{4}}$
c) $\frac{H_{3} H_{5}+H_{1} H_{2} H_{3}}{1-H_{2} H_{3} H_{4}}$

For problems 20-23 consider the signal flow graph representation of the following block diagram.

20) How many paths are there?
a) 0
b) 1 c) 2
d) 3
e) 4
21) How many loops are there?
a) 0
b) 1
c) 2
d) 3
e) 4
22) The determinant (Δ) is
a) 1
b) $1-H_{2} H_{3}-H_{3} H_{4}$
c) $1+\mathrm{H}_{2} \mathrm{H}_{3}+\mathrm{H}_{3} \mathrm{H}_{4}$
d) none of these
23) The transfer function is a) 1
b) $\frac{H_{1} H_{2} H_{3}}{1-H_{2} H_{3}-H_{3} H_{4}}$
c) $\frac{H_{1} H_{2} H_{3}}{1+H_{2} H_{3}+H_{3} H_{4}}$

For problems 24-26 consider the following signal flow graph

24) How many paths are there?
$\begin{array}{llll}\text { a) } 1 & \text { b) } 2 & \text { c) } 3 & \text { d) } 4\end{array}$
25) How many loops are there?
a) 2
b) 3
c) 4
d) 5
$\begin{array}{lll}\text { e) } 6 & \text { f) } 7\end{array}$
26) Are any of the cofactors equal to 1 ?
a) yes
b) no
27) For the following system:

the value of the prefilter $G_{p f}$ that produces a steady state error of zero for a unit step input is:
a) 1
b) $3 / 2$
c) $5 / 2$
d) $1 / 3$
28) The unit step response of a system is given by $y(t)=0.5 u(t)-t u(t)-t^{4} e^{-t} u(t)+e^{-t} u(t)$

The steady state error for a unit step input for this system is best estimated as
a) ∞
b) 0.5
c) 2.0
d) impossible to determine
29) The unit step response of a system is given by $y(t)=0.5 u(t)-t^{4} e^{-t} u(t)+e^{-t} u(t)$

The steady state error for a unit step input for this system is best estimated as
a) ∞
b) 0.5 c) 2.0
d) impossible to determine
30) The unit step response of a system is given by $y(t)=1.5 u(t)-t e^{-t} u(t)+e^{-t} u(t)$

The steady state error for a unit step input for this system is best estimated as
a) ∞
b) 0.5 c) -0.5
d) impossible to determine

Problems 31 and 32 refer to the unit step response of a system, shown below

31) The best estimate of the steady state error for a unit step input is
a) 0.20
b) -0.20
c) 1.0
d) -0.0
32) The best estimate of the percent overshoot is
a) 200%
b) 100%
c) 67%
d) 20%
33) For the system described by the following transfer function

$$
G(s)=\frac{b s+a}{(s+1)(s+6)}
$$

For a zero steady state error for a step input, the value of a should be
a) 0
b) 6
c) 1
d) 5

Problems 34 and 35 refer to the system described by the transfer function $G(s)=\frac{s+1}{(s+2)(s+3)}$
34) The steady state error for a unit step input for this system is best approximated as
a) $1 / 6$
b) 2
c) 0
d) $5 / 6$
35) The static gain for this system is a) $1 / 3$ b) $1 / 2$ c) $1 / 6$ d) none of these

Problems 36 and 37 refer to the unit step response of a system, shown below

36) The best estimate of the steady state error for a unit step input is
a) 0.50
b) 0.25
c) -0.25
d) 0.0
e) impossible to determine
37) The best estimate of the percent overshoot is
a) 20%
b) 50%
c) 25%
d) 150%
38) The unit ramp response of a system is given $\mathrm{b} y(t)=-0.5 u(t)-2 t u(t)+e^{-t} u(t)$.

The best estimate of the steady state error for a unit ramp input is
a) 0.5
b) 2.0
c) 1.0
d) ∞
39) For the unit ramp response of a system, shown below, the best estimate of the steady state error is
a) 0.1
b) -0.1
c) 0
d) 0.4 e) -0.4

40) The unit ramp response of a system is given by $y(t)=-0.5 u(t)+t u(t)+e^{-t} u(t)$.

The best estimate of the steady state error is
a) 0.5
b) 2.0
c) 1.0
d) ∞
41) For the unit ramp response of a system shown below, the best estimate of the steady state error is
a) 0.8
b) 0.6 c) 0.4
d) 0.2

42) For the block diagram below, the value of the prefilter $G_{p f}$ that produces zero steady state error for a unit step input is:
a) 1
b) $3 / 2$
c) 3
d) $1 / 3$

Problems 43 and 44 refer to a plant with transfer function $G_{p}(s)=\frac{3}{s+4}$
43) The (2\%) settling time for this plant is
a) 1 seconds
b) 2 seconds
c) 3 seconds
d) 4 seconds
e) none of these
44) If the input to the plant is a unit step, the steady state error will be
a) 0
b) 0.25
c) 0.5
d) 0.75
e) 1.0 f) none of these

Problems 45-47 refer to the following feedback system, with the plant $G_{p}(s)=\frac{3}{s+4}$ and proportional controller, $G_{c}(s)=k_{p}$

45) If we want the settling time to be 0.1 seconds, the value of k_{p} should be
a) 40
b) 36
c) 12
d) 10
e) none of these
46) If we assume the prefilter is $1\left(G_{p f}(s)=1\right)$, and we want the steady state error for a unit step to be $4 / 19$, then we should choose the value of k_{p} to be
a) 3
b) 4
c) 5
d) 6
e) none of these
47) Does a constant prefilter affect the settling time? a) yes b) no

Problems 48 and 49 refer to a plant with transfer function $G_{p}(s)=\frac{5}{(s+4)(s+2)}$
48) The (2\%) settling time for this plant is
a) 1 seconds
b) 2 seconds
c) 3 seconds
d) 4 seconds
e) none of these
49) If the input to the plant is a unit step, the steady state error will be
a) 0
b) $5 / 8$
c) 0.5
d) $3 / 8$
e) 1.0 f) none of these

Problem 50-refers to the following feedback system, with the plant $G_{p}(s)=\frac{5}{(s+4)(s+2)}$ and proportional controller, $G_{c}(s)=k_{p}$

50) If we assume the prefilter is $1\left(G_{p f}(s)=1\right)$, and we want the steady state error for a unit step to be $8 / 58$, then we should choose the value of k_{p} to be
a) 40
b) 36
c) 12
d) 10
e) none of these

Answers: 1-a, 2-c, 3-d, 4-b, 5-c, 6-b, 7-a, 8-a, 9-a, 10-a, 11-b, 12-e, 13-c, 14-a, 15-e, 16-c, 17-b, 18-c, 19-b, $20-b, 21-c, 22-c, 23-c, 24-b, 25-d, 26-b, 27-c, 28-a, 29-b, 30-c, 31-b, 32-c, 33-b, 34-d, 35-c, 36-c, 37-a$, 38-d, 39-a, 40-a, 41-c, 42-a, 43-a, 44-b, 45-c, 46-c, 47-b, 48-b, 49-d, 50-d

