Due : Friday November 30 at 5 PM
Use the ideal op-amp assumption for all of the following problems (and all problems in this course, unless you are explicitly told otherwise).

1) Chapter 2 Problem 2.1
2) Chapter 2 Problem 2.2
3) Chapter 2 Problem 2.3
4) Chapter 2 Problem 2.5
5) Chapter 2 Problem 2.6
6) For the following circuit, show that $v_{\text {out }}(t)=\left(\frac{R_{b} R_{d}}{R_{a} R_{c}}\right) v_{\text {in }}(t)$

7) For the following circuit, show that $v_{\text {out }}(t)=\left(-\frac{R_{e}}{R_{d}} \frac{R_{b}}{R_{a}+R_{b}}\right) v_{\text {in }}(t)$

8) For the following circuit, show that $v_{\text {out }}(t)=\left(-\frac{R_{b}}{R_{a}} \frac{R_{c}+R_{d}}{R_{d}}\right) v_{\text {in }}(t)$

Note that the polarity of the two op-amps are different!

