ECE-205 Practice Quiz 1

(No Calculators)

1) For a first order RC circuit, the time constant is of the form
a) $\tau=R_{t h} C$
b) $\tau=R_{t h} / C$
c) $\tau=C / R_{t h}$
d) none of these
2) For a first order RL circuit, the time constant is of the form
a) $\tau=R_{t h} L$
b) $\tau=R_{t h} / L$
c) $\tau=L / R_{t h}$
d) none of these
3) The differential equation that relates the current through a capacitor to the voltage across a capacitor is
a) $i_{c}(t)=C \frac{d v_{c}(t)}{d t}$
b) $v_{c}(t)=C \frac{d i_{c}(t)}{d t}$
c) $i_{c}(t)=\frac{1}{C} \frac{d v_{c}(t)}{d t}$
d) $v_{c}(t)=\frac{1}{C} \frac{d i_{c}(t)}{d t}$
4) The differential equation that relates the current though an inductor to the voltage across an inductor is
a) $i_{L}(t)=L \frac{d v_{L}(t)}{d t}$
b) $v_{L}(t)=L \frac{d i_{L}(t)}{d t}$
c) $i_{L}(t)=\frac{1}{L} \frac{d v_{L}(t)}{d t}$
d) $v_{L}(t)=\frac{1}{L} \frac{d i_{L}(t)}{d t}$
5) The standard form for an RC or RL first order circuit, with input $x(t)$ and output $y(t)$, is
a) $\frac{1}{\tau} \frac{d y(t)}{d t}+y(t)=K x(t)$
b) $\tau \frac{d y(t)}{d t}+y(t)=K x(t)$
c) $\frac{d y(t)}{d t}+\tau y(t)=K x(t)$
d) $\frac{d y(t)}{d t}+\tau y(t)=\frac{1}{K} x(t)$
e) $\tau \frac{d y(t)}{d t}+y(t)=\frac{1}{K} x(t)$
f) $\frac{d y(t)}{d t}+\tau y(t)=K x(t)$
6) A capacitor is a/an
a) open circuit
b) short circuit
to DC signals.
7) An inductor is a/an
a) open circuit
b) short circuit to DC signals.

Problems 8 and 9 refer to the following circuit:

8) The Thevenin resistance seen from the ports of the capacitor is
a) $R_{t h}=R_{a}+R_{b}$
b) $R_{t h}=R_{c}$
c) $R_{t h}=R_{c} \|\left(R_{a}+R_{b}\right)$
d) $R_{t h}=R_{a}+R_{b}+R_{c}$
e) none of these
9) The static gain for the system is
a) $K=1$
b) $K=\frac{R_{c}}{R_{a}+R_{b}+R_{c}}$
c) $K=\frac{R_{a}+R_{b}}{R_{a}+R_{b}+R_{c}}$
d) $K=\frac{R_{c}}{R_{a}+R_{b}}$
e) none of these

Problems 10 and 11 refer to the following circuit

10) The Thevenin resistance seen from the ports of the capacitor is
a) $R_{t h}=R_{a}+R_{b}$
b) $R_{t h}=R_{c}$
c) $R_{t h}=R_{c} \|\left(R_{a}+R_{b}\right)$
d) $R_{t h}=R_{a}+R_{b}+R_{c}$
e) none of these
11) The static gain for the system is
a) $K=1$
b) $K=R_{c}$
c) $K=R_{a}+R_{b}$
d) $K=R_{c} \|\left(R_{a}+R_{b}\right)$
e) none of these

Problems 12 and 13 refer to the following circuit

12) The Thevenin resistance seen from the ports of the inductor is
a) $R_{t h}=R_{a}+R_{b} \| R_{c}$
b) $R_{t h}=R_{c}+R_{a} \| R_{b}$
c) $R_{t h}=R_{a}+R_{b}$
d) $R_{t h}=R_{a}+R_{c}$ e) none of these
13) The static gain for the system is
a) $K=1$
b) $K=\frac{R_{b}}{R_{a}+R_{b}}$
c) $K=\frac{R_{a}}{R_{a}+R_{b}}$
d) $K=\frac{R_{b}}{R_{c}+R_{b}}$
e) none of these

Problems 14 and 15 refer to the following circuit

14) The Thevenin resistance seen from the ports of the inductor is
a) $R_{t h}=R_{c} \|\left(R_{a}+R_{b}\right)$
b) $R_{t h}=R_{c}$
c) $R_{t h}=R_{a}+R_{b}$
d) $R_{t h}=R_{a}+R_{b}+R_{c}$
e) none of these
15) The static gain for the system is
a) $K=1$
b) $K=\frac{R_{a}+R_{b}}{R_{a}+R_{b}+R_{c}}$
c) $K=\frac{R_{c}}{R_{a}+R_{b}+R_{c}}$
d) $K=\frac{R_{c}}{R_{a}+R_{b}}$
e) none of these
16) If $z=\frac{1-j}{2+j}$, the magnitude of $z,|z|$ is
a) $\sqrt{\frac{2}{5}}$
b) 0
c) $\sqrt{\frac{2}{3}}$
d) none of these
17) If $z=1-j$, the phase of $z, \angle z$, is
a) 45°
b) -45°
c) 90°
d) -90°
e) none of these
18) If $z=\frac{-j}{1-j}$, the phase of $z, \angle z$, is
a) 45°
b) -45°
c) 135°
d) -135°
e) none of these
19) If $z=\frac{2-j}{3-2 j}$, the complex conjugate of z, z^{*}, is
a) $z=\frac{2+j}{3-2 j}$
b) $z=\frac{2+j}{3+2 j}$
c) $z=\frac{2-j}{3+2 j}$
d) none of these

Answers: 1-a, 2-c, 3-a, 4-b, 5-b, 6-a, 7-b, 8-c, 9-c, 10-a, 11-c, 12-a, 13-e, 14-d, 15-b, 16-a, 17-b, 18-b, 19-b

