Name	CM
------	----

ECE-205 Exam 3 Winter 2011

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 1 _____/25

Problem 2 _____/25

Problem 3 _____/25

Problem 4 _____/25

Total _____

Name	CM	
Turife	O111	

1) (25 points) For the following impulse responses and inputs, compute the system output using Laplace transforms. Specifically, compute H(s), X(s), Y(s), and then y(t).

a)
$$h(t) = e^{-t}u(t)$$
, $x(t) = u(t)$

b)
$$h(t) = e^{-t}u(t)$$
, $x(t) = 2\delta(t-1)$

c)
$$h(t) = e^{-t}u(t)$$
, $x(t) = u(t-2)$

d)
$$h(t) = e^{-t}u(t)$$
, $x(t) = e^{-(t-2)}u(t-2)$

2) (25 points) Consider the following simple feedback control block diagram. The plant, the thing we want to control, has the transfer function $G_p(s) = \frac{4}{s+2}$

- a) Determine the settling time of the plant alone (assuming there is no feedback)
- **b**) Determine the steady state error for plant alone assuming the input is a unit step (simplify your answer)
- c) For a proportional controller, $G_c(s) = k_p$, determine the closed loop transfer function $G_0(s)$
- d) Determine the settling time of the closed loop system in terms of k_p
- e) Determine the steady state error of the closed loop system for a unit step, in terms of k_p (simplify your answer as much as possible)
- **f**) For and integral controller, $G_c(s) = \frac{k_i}{s}$, determine the maximum positive value of k_i that produces purely real poles.

Traine Civi	Name $_$		CM		
-------------	-----------	--	----	--	--

- 3) (25 points)
- a) The following circuit can be used to implement the PI controller

$$G_c(s) = \frac{U(s)}{E(s)} = k_p + \frac{k_i}{s}$$

Determine expressions for k_p and k_i in terms of the parameters given in the circuit.

b) The following circuit can be used to implement the PD controller $G_c(s) = \frac{U(s)}{E(s)} = k_p + k_d s$ Determine expressions for k_p and k_d in terms of the parameters given in the circuit.

4) (25 points) Consider a linear time invariant system with impulse response given by

$$h(t) = t[(u(t+1.5) - u(t-1.5))]$$

The input to the system is given by

$$x(t) = [u(t) - u(t-1)] + [u(t-2) - u(t-4)]$$

The impulse response and input are shown below:

Using graphical evaluation, determine the output y(t) Specifically, you must

- Flip and slide h(t), <u>NOT</u> x(t)
- Show graphs displaying both $h(t-\lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute y(t). Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t-\lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!

Name	Mailbox

Name	Mailbox