Name ______ Mailbox _____

ECE-205 Exam 2 Winter 2011

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 1	/18
Problem 2	/20
Problem 3	/18
Problem 4	/15
Problem 5	/20
Problem 6	
Total	

Name	Mailbox	
1 uniic	 Manoon	

1) (18 points) Fill in the non-shaded part of the following table.

	Linear? (Y/N)	Time Invariant? (Y/N)	BIBO Stable? (Y/N)
y(t) = 2x(t) + 3			
$\dot{y}(t) - \cos(t)y(t) = x(t)$			
y(t) = x(1-t)			
$y(t) = \int_{-\infty}^{t} e^{(t-\lambda)} x(\lambda) d\lambda$			
y(t) = tx(t)			
$y(t) = \cos\left(\frac{1}{x(t)}\right)$			

2) (20 points) For the following interconnected systems,

i) determine the overall impulse response (the impulse response between input x(t) and output y(t)) and

ii) determine if the system is causal.

a)
$$h_1(t) = \delta(t-2), h_2(t) = \delta(t+1)$$

Parallel Connection:

Series Connections:

b)
$$h_1(t) = e^{-(t-1)}u(t-1), h_2(t) = u(t)$$

Parallel Connection:

Series Connections:

- **3)** (18 Points) Determine the impulse response for the following systems. Don't forget any necessary unit step functions.
- a) y(t) = x(t-1) + x(t+1)
- b) $y(t) = \int_{-\infty}^{t+1} e^{-(t-\lambda)} x(\lambda 2) d\lambda$
- c) $3\dot{y}(t) y(t) = 2x(t-1)$

Name	Mailbox

4) (15 points) The input-output relationship for the following system can be written as

$$y(t) * A(t) = x(t) * B(t)$$

Determine A(t) and B(t)

Name	Mailbox

5) (20 points) Consider a linear time invariant system with impulse response given by

$$h(t) = e^{-(t-1)}u(t-1)$$

The input to the system is given by

$$x(t) = [u(t-1) - u(t-2)] + u(t-3)$$

Using *graphical evaluation*, determine the output y(t) Specifically, you must

- Flip and slide h(t), <u>NOT</u> x(t)
- Show graphs displaying both $h(t-\lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute y(t). Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t-\lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!

6) (9 points) This problem refers the following graph showing the response of a second order system to a step input.

- a) The percent overshoot for this system is best estimated as
- a) 400% b) -400 %
- c) 300%
- d) -300 %
- e) -33%
- f) 33%
- **b)** The (2%) settling time for this system is best estimated as

- a) 0.3 ms b) 0.6 ms c) 1.0 ms d) 1.2 ms
- c) The static gain for this system is best estimated as
- a) 1.5
- b) 3
- c) -1.5
- d) -3

Name	Mailbox

Name	Mailbox