ECE-205

Exam 2

Winter 2010-2011

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 1 /20

Problem 2 /30

Problem 3 \qquad /15

Problem 4 \qquad /20

Problem 5 \qquad

Total \qquad
\qquad
\qquad

1) (20 points) For the following interconnected systems,
i) determine the overall impulse response (the impulse response between input $x(t)$ and output $y(t)$)
ii) determine if the system is causal.

a) $h_{1}(t)=\mathrm{u}(t+2), h_{2}(t)=\delta(t-1)$

Systems in series:

Systems in parallel:
b) $h_{1}(t)=\mathrm{e}^{-(t-3)} u(t-3), h_{2}(t)=e^{(t+2)} u(t+2)$

Systems in series:

Systems in parallel:
\qquad
2) (30 points) Consider a linear time invariant system with impulse response given by

$$
h(t)=2 \sin (\pi t)[u(t+1)-u(t-3)]
$$

The input to the system is given by $x(t)=e^{-(t-2)}[u(t-2)-u(t-3)]-e^{-2(t-5)}[u(t-5)-u(t-7)]$

Using graphical evaluation, determine the output $y(t)$ Specifically, you must

- Flip and slide $h(t), \underline{\text { NOT }} x(t)$
- Show graphs displaying both $h(t-\lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute $y(t)$. Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t-\lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!

Name
Mailbox
\qquad
3) ($\mathbf{1 5}$ points) Determine the impulse response for the following LTI systems. Do not forget any necessary unit step functions.
a) $y(t)=2 x(t)+\int_{-\infty}^{t+1} e^{-(t-\lambda)} x(\lambda-2) d \lambda$
b) $2 \dot{y}(t)+y(t)=3 x(t-1)$
\qquad Mailbox \qquad
4) (20 points) Fill in the following table with a Y (yes) or N (no) for each of the system models given. Assume $-\infty<t<\infty$ for all of the systems and all initial conditions are zero.

System	System Model	Linear?	Time- Invariant?	Causal?	Memoryless?
1	$y(t)=x(-t)$				
2	$y(t)=\frac{1}{1+x(t)}$				
3	$y(t)=x(t-1)+x(t-2)$				
4	$y(t)=\int_{-\infty}^{t} \lambda x(\lambda+1)$				
5	$\dot{y}(t)+\sin (t) y(t)=e^{t+1} x(t)$				

\qquad
5) ($\mathbf{1 5}$ points) In this problem you will derive some important relationships for second order systems that we derived in class.

Consider the system described by the second order differential equation

$$
\ddot{y}(t)+2 \zeta \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=K \omega_{n}^{2} x(t)
$$

If the system is initially at rest and the is input $x(t)=A u(t)$, the output can be written as

$$
y(t)=K A\left[1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t+\phi\right)\right]
$$

where $\tan (\phi)=\frac{\sqrt{1-\zeta^{2}}}{\zeta}$ and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$
a) Time to Peak (Tp). To determine the time to peak, take the derivative of $y(t)$ and determine the time at which the derivative is zero. Remember that the tangent is periodic with period π.
You should get $T_{p}=\frac{\pi}{\omega_{d}}$. Even if you don't, use this value in part b.
\qquad Mailbox \qquad
b) Percent Overshoot ($\mathbf{P O}$). The percent overshoot is defined as the value at the peak $y\left(T_{p}\right)$ minus the steady state value $y(\infty)$ divided by the steady state value, and then multiplied by 100%,

$$
P O=\frac{y\left(T_{p}\right)-y(\infty)}{y(\infty)} \times 100 \%
$$

i) Determine the steady state value $y(\infty)$
ii) Using your knowledge that $\tan (\phi)=\frac{\sqrt{1-\zeta^{2}}}{\zeta}$, draw a triangle and determine an expression for $\sin (\phi)$
iii) Using the answer to ii and the fact that $\sin (\pi+\phi)=-\sin (\phi)$, determine $y\left(T_{p}\right)$
iv) Determine an expression for the percent overshoot. You should get $P O=e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}} \times 100 \%$
\qquad
c) Settling Time (Ts). Determine the time constant for the system, and then the 2% settling time (4 time constants)

Name
Mailbox

