ECE-205 Practice Quiz 8

 (no Tables, Calculators, or Computers)

 (no Tables, Calculators, or Computers)}

Problems 1 and 2 refer to the following transfer function $H(s)=\frac{2 s+1}{(s+1)^{2}+4}$

1) For this transfer function, the corresponding impulse response $h(t)$ is composed of which terms?
a) $e^{-t} \cos (2 t), e^{-t} \sin (2 t)$
b) $e^{-2 t} \cos (t), e^{-2 t} \sin (t)$
c) $e^{-t} \cos (4 t), e^{-t} \sin (4 t)$
d) $e^{-4 t} \cos (t), e^{-4 t} \sin (t)$
2) The poles of the transfer function are
a) $2 \pm \mathrm{j}$
b) $-2 \pm j$
c) $-1 \pm 2 \mathrm{j}$
d) $-1 \pm 4 \mathrm{j}$

Problems 3 and 4 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[1+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

3) The number of (asymptotically) maginally stable systems is a) 0 b) 1 c) 2 d) 3
4) The number of (asymptotically) unstable systems is
a) 0
b) 1
c) 2
d) 3
5) Which of the following transfer functions represents a (asymptotically) stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} \quad G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s} \quad G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but G_{c} b) only G_{a}, G_{b}, and G_{d} c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}

Problems 6 and 7 refer to the following impulse responses of six different systems

$$
\begin{aligned}
& h_{1}(t)=\left[t e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=\left[2 e^{-2 t}+t^{3} \sin (t)\right] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

6) The number of (asymptitcally) unstable systems is
7) The number of (asymptotically) marginally stable systems is
a) 1
b) 2
c) 3
d) 4
a) 1
b) 2
c) 3
d) 4

Problems 8 and 9 refer to a system with poles at $-2+5 \mathrm{j} .-2-5 \mathrm{j} .-10+\mathrm{j},-10-\mathrm{j}$, and -20
8) The best estimate of the settling time for this system is
a) 2 seconds
b) 0.4 seconds
c) $4 / 5$ seconds
d) 0.2 seconds
9) The dominant pole(s) of this system are
a) $-2+5 j$ and $-2-5 j$
b) $-10+\mathrm{j}$ and $-10-\mathrm{j}$
c) -20
10) Which of the following transfer functions represents a (asymptotically) stable system?

$$
\begin{array}{lll}
G_{a}(s)=\frac{s-1}{s+1} & G_{b}(s)=\frac{s}{(s+1)} & G_{c}(s)=\frac{s}{s^{2}-1} \\
G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} & G_{e}(s)=\frac{(s-1-j)(s-1+j)}{(s+2)^{2}} & G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}
\end{array}
$$

a) all but G_{c}
b) only G_{a}, G_{b}, and G_{d}
c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}
11) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
a) $T_{s} \leq 1$
b) $T_{s} \geq 1$
c) $T_{s} \geq 4$
d) $T_{s} \leq 4$
e) none of these

12) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
a) $T_{p} \leq 1$
b) $T_{p} \geq 1$
c) $T_{p} \geq \pi$
d) $T_{p} \leq \pi$
e) none of these

13) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
a) $P O \geq 20 \%$ b) $P O \leq 20 \%$

Answers: 1-a, 2-c, 3-d, 4-b, 5-c, 6-b, 7-a, 8-a, 9-a, 10-a, 11-d, 12-d, 13-b

