ECE-205 Practice Quiz 8

(no Tables, Calculators, or Computers)

Problems 1 and 2 refer to the following transfer function $H(s) = \frac{2s+1}{(s+1)^2+4}$

- 1) For this transfer function, the corresponding impulse response h(t) is composed of which terms?
- a) $e^{-t}\cos(2t), e^{-t}\sin(2t)$ b) $e^{-2t}\cos(t), e^{-2t}\sin(t)$
- c) $e^{-t}\cos(4t)$, $e^{-t}\sin(4t)$ d) $e^{-4t}\cos(t)$, $e^{-4t}\sin(t)$
- 2) The **poles** of the transfer function are
- a) $2 \pm j$ b) $-2 \pm j$
- c) $-1 \pm 2i$ d) $-1 \pm 4i$

Problems 3 and 4 refer to the impulse responses of six different systems given below:

$$h_1(t) = [1 + e^{-t}]u(t)$$

$$h_2(t) = e^{-2t}u(t)$$

$$h_3(t) = [2 + \sin(t)]u(t)$$

$$h_4(t) = [1 - t^3 e^{-0.1t}]u(t)$$

$$h_5(t) = [1 + t + e^{-t}]u(t)$$

$$h_6(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

- 3) The number of (asymptotically) maginally stable systems is a) 0 b) 1 c) 2 d) 3
- 4) The number of (asymptotically) **unstable systems** is
- a) 0 b) 1 c) 2 d) 3

5) Which of the following transfer functions represents a (asymptotically) stable system?

$$G_a(s) = \frac{s-1}{s+1}$$

$$G_b(s) = \frac{1}{s(s+1)}$$
 $G_c(s) = \frac{s}{s^2 - 1}$

$$G_c(s) = \frac{s}{s^2 - 1}$$

$$G_d(s) = \frac{s+1}{(s+1+j)(s+1-j)}$$

$$G_d(s) = \frac{s+1}{(s+1+i)(s+1-i)} \quad G_e(s) = \frac{(s-1-j)(s-1+j)}{s} \quad G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-i)(s+1+i)}$$

$$G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$$

- a) all but $\,G_{\!_{c}}\,\,$ b) only $\,G_{\!_{a}}\,,\,\,G_{\!_{b}}\,,$ and $\,G_{\!_{d}}\,\,$ c) only $\,G_{\!_{a}}\,,\,\,G_{\!_{d}}\,,$ and $\,G_{\!_{f}}\,\,$
- d) only G_d and G_f

e) only G_a and G_d

Problems 6 and 7 refer to the following impulse responses of six different systems

$$h_{\scriptscriptstyle 1}(t) = [te^{-t}]u(t)$$

$$h_2(t) = e^{-2t}u(t)$$

$$h_3(t) = [2e^{-2t} + t^3 \sin(t)]u(t)$$

$$h_{A}(t) = [1 - t^{3}e^{-0.1t}]u(t)$$

$$h_5(t) = [1 + t + e^{-t}]u(t)$$

$$h_6(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

- **6)** The number of (asymptitcally) **unstable** systems is
- a) 1 b) 2 c) 3 d) 4
- 7) The number of (asymptotically) marginally stable systems is a) 1 b) 2 c) 3 d) 4

Problems 8 and 9 refer to a system with poles at -2+5j. -2-5j. -10+j, -10-j, and -20

- 8) The best estimate of the **settling time** for this system is
- a) 2 seconds
- b) 0.4 seconds c) 4/5 seconds d) 0.2 seconds
- 9) The **dominant pole(s)** of this system are
- a) -2+5j and -2-5j b) -10+j and -10-j c) -20

10) Which of the following transfer functions represents a (asymptotically) stable system?

$$G_a(s) = \frac{s-1}{s+1}$$

$$G_b(s) = \frac{s}{(s+1)}$$

$$G_c(s) = \frac{s}{s^2 - 1}$$

$$G_c(s) = \frac{s}{s^2 - 1}$$

$$G_d(s) = \frac{s+1}{(s+1+j)(s+1-j)}$$

$$G_e(s) = \frac{(s-1-j)(s-1+j)}{(s+2)^2}$$

$$G_d(s) = \frac{s+1}{(s+1+j)(s+1-j)} \quad G_e(s) = \frac{(s-1-j)(s-1+j)}{(s+2)^2} \quad G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$$

- a) all but $\,G_{\!c}\,$ b) only $\,G_{\!a}\,$, $\,G_{\!b}\,$, and $\,G_{\!d}\,$ c) only $\,G_{\!a}\,$, $\,G_{\!d}\,$, and $\,G_{\!f}\,$ d) only $\,G_{\!d}\,$ and $\,G_{\!f}\,$
- e) only G_a and G_d
- 11) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
- a) $T_s \le 1$ b) $T_s \ge 1$ c) $T_s \ge 4$ d) $T_s \le 4$ e) none of these

12) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?

a)
$$T_p \le 1$$
 b) $T_p \ge 1$ c) $T_p \ge \pi$ d) $T_p \le \pi$ e) none of these

13) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints? a) $PO \ge 20\%$ b) $PO \le 20\%$

Answers: 1-a, 2-c, 3-d, 4-b, 5-c, 6-b, 7-a, 8-a, 9-a, 10-a, 11-d, 12-d, 13-b