Quiz #8

Problems 1 and 2 refer to a system with poles at -2+j. -2-j. -4, -1+2j, -1-2j, and -20

- 1) The best estimate of the <u>settling time</u> for this system is
- a) 4 seconds b) 2 seconds c) 1 second d) 0.2 seconds
- 2) The **dominant pole(s)** of this system are
- a) -2+j and -2-j b) -1+2j and -1-2j c) -4 d) -20

3) How many terms will there be in the partial fraction expansion of $H(s) = \frac{(s+1)^2}{s^2(s+2)^2}$? a) 2 b) 3 c) 4 d) 6

4) How many terms will there be in the partial fraction expansion of $H(s) = \frac{s}{(s^2 + 1)(s + 2)}$? a) 0 b) 1 c) 2 d) 3

5) An impulse response h(t) is composed of the terms $1, e^{-t}, te^{-t}$

A possible corresponding transfer function (for some constant value A) is

a)
$$H(s) = \frac{A}{s(s+1)}$$

b) $H(s) = \frac{A}{s^2(s+1)}$
c) $H(s) = \frac{As}{(s+1)}$
d) $H(s) = \frac{A}{s(s+1)^2}$

Problems 6 and 7 refer to the following transfer function

$$H(s) = \frac{2s+1}{(s+2)^2+1}$$

6) For this transfer function, the corresponding impulse response h(t) is composed of which terms?

a)
$$e^{-t} \cos(2t), e^{-t} \sin(2t)$$

b) $e^{-2t} \cos(t), e^{-2t} \sin(t)$
c) $e^{-t} \cos(4t), e^{-t} \sin(4t)$
d) $e^{-4t} \cos(t), e^{-4t} \sin(t)$

7) The **poles** of the transfer function are

a) 2 ± j	b) -2± j
c) -1 ± 2j	d) -1 ± 4j

Name _____

Problems 8 and 9 refer to the impulse responses of six different systems given below:

$$h_{1}(t) = [t + e^{-t}]u(t)$$

$$h_{2}(t) = e^{-2t}u(t)$$

$$h_{3}(t) = [2 + \sin(t)]u(t)$$

$$h_{4}(t) = [1 - t^{3}e^{-0.1t}]u(t)$$

$$h_{5}(t) = [1 + t + e^{-t}]u(t)$$

$$h_{6}(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

8) The number of stable systems is
a) 0 b) 1 c) 2 d) 3
9) The number of unstable systems is
a) 0 b) 1 c) 2 d) 3

10) Which of the following transfer functions represents a stable system?

$$\begin{aligned} G_a(s) &= \frac{s-1}{s+1} & G_b(s) = \frac{1}{s(s+1)} & G_c(s) = \frac{s}{s^2 - 1} \\ G_d(s) &= \frac{s+1}{(s+1+j)(s+1-j)} & G_e(s) = \frac{(s-1-j)(s-1+j)}{s} & G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)} \end{aligned}$$

a) all but G_c b) only G_a , G_b , and G_d c) only G_a , G_d , and G_f d) only G_d and G_f e) only G_a and G_d

11) For the transfer function

$$H(s) = \frac{1}{s^2(s+2)}$$

the corresponding impulse response h(t) is composed of which terms?

a) $t^2 e^{-2t}$ b) t and $t e^{-2t}$ c) $1, t, t e^{-2t}$ d) t^2, e^{-2t} e) none of these

12) The Laplace transform of x(t) = u(t) - u(t-2) is a) $X(s) = 1 - e^{-2s}$ b) $X(s) = 1 - e^{+2s}$ c) $X(s) = \frac{1}{s} - \frac{e^{-2s}}{s}$ d) none of these

13) The Laplace transform of
$$x(t) = te^{-3t}u(t)$$
 is
a) $X(s) = \frac{1}{s+3} \frac{1}{s+3}$ b) $X(s) = \frac{1}{s+3}$ c) $X(s) = \frac{1}{(s+3)^2}$ d) $X(s) = \frac{2}{(s+3)^2}$

14) The Laplace transform of
$$x(t) = (t-2)u(t-2)$$
 is
a) $X(s) = \frac{1}{s-2}$ b) $X(s) = \frac{e^{-2s}}{s^2}$ c) $X(s) = \frac{e^{-2s}}{s-2}$ d) none of these

For the following three problems, the following relationship may be useful

$$T_p = \frac{\pi}{\omega_d}, T_s = \frac{4}{\sigma}, \theta = \cos^{-1}(\zeta)$$

15) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?

a)
$$T_s \le 1$$
 b) $T_s \ge 1$ c) $T_s \ge 4$ d) $T_s \le 4$ e) none of these

16) Assuming we are allowed to place our poles only in the (dark) shaded areas, which of the following two shaded regions will in general result in a **smaller settling time** for our system?

a) the region in the top figure b) the region in the bottom figure

Name	Mailbox	
-		

17) Assuming we are allowed to place our poles only in the (dark) shaded areas, which of the following two shaded regions will in general result in a **smaller time to peak** for our system?

a) the region in the top figure b) the region in the bottom figure

18) One of the shaded regions below shows the possible pole locations for a percent overshoot less than 10%, and the other shows the possible pole locations for a percent overshoot less than 20%. Which of the two graphs shows the possible pole locations for a percent overshoot less than 20%?

