
7.0 Laplace Transform Applications 

 
In this chapter we will examine many applications of Laplace transforms. While it is 
possible to go back to the time-domain to determine properties of a system, it is often 
more convenient to be able to determine these properties in the s-domain directly.  
 
7.1 Characteristic Polynomial, Characteristic Modes, and the Impulse Response 
 
Consider a transfer function of the form 
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where and are polynomials in s  with no common factors.  is called the 
characteristic polynomial of the system. The poles of the system are determined from 

 and these give us most of the information we need to completely characterize the 
system. The time-domain functions that correspond to the poles of the transfer function 
are called the characteristic modes of the system. To determine the characteristic modes 
of a system it is often easiest to think of doing a partial fraction expansion and 
determining the resulting time functions. Finally, the impulse response is a linear 
combination of characteristic modes. A few examples will help. 
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Example 7.1.1. Consider the transfer function  
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The characteristic polynomial is 2 ( 1)( 3)( sD s s s+ +=

1 2 3( ) a ( ) a ( )uu t tu t t= + +

 and the characteristic modes are 
 and . The impulse response is a linear combination of these 

characteristic modes, . 
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Example 7.1.2. Consider the transfer function  
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The characteristic polynomial is 2( ) ( 1) ( 3)D s s s s= + +

)t

1 2 3( ) ( )( ) t tu t e tea u t a u t− −= + +

 and the characteristic modes are 
 and . The impulse response is a linear combination of these 

characteristic modes, . 
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Example 7.1.3. Consider the transfer function 
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The characteristic polynomial is 2( ) 1D s s s= + +  and the characteristic modes are 
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There are a few things to keep in mind when finding the characteristic modes of a system: 
 

• There are as many characteristic modes as there are poles in the transfer function 
 

• For complex conjugate poles of the form djσ ω− ± the characteristic modes will 
be of the form  and . Note that we could 
combine these into the form  

cos( ) ( )t
de tσ ω−

te σ−

u t u tsin( ) (de ω
) ( )t u tω θ+

)t tσ−

( dcos
 

Example 7.1.4. If a transfer function has poles at 1, 1, 2 3 ,j− − − ±  and 25 j− ±
3 ) ( )t u t

 the 
characteristic modes will be , 

, and . 

2 2cos(3 ) ( ), st t u t e−( ), ( ), in(t t te u t te u t e− − −

(2 ) ( )e t u t5 cos(2 ) ( )te t u− t 5 sint−

 
7.2  Asymptotic Stability 
 
We have previously introduced the concept of Bounded Input Bounded Output, or BIBO, 
stability. As we have seen, an LTI system is BIBO stable if 
 

| ( ) |h dλ λ
∞

−∞

< ∞∫  

Another useful definition of stability, which is used often in control systems, is that of  
asymptotic stability. A system is defined to be asymptotically stable if all of its 
characteristic modes go to zero as t , or equivalently, if →∞ lim ( ) 0

t
h t

→∞
= . A system is 

defines to be asymptotically marginally stable is all of its characteristic modes are 
bounded as t , or equivalently, if →∞ lim

t→∞
| ( ) |h t M≤  for some constant M. If  a system is 

neither asymptotically stable or asymptotically marginally stable, the system is 
asymptotically unstable. In determining asymptotic stability, the following mathematical 
truths should be remembered: 
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Example 7.2.1.  Assume a system has poles at -1, 0. and -2. Is the system asymptotically 
stable? The characteristic modes for this system are  and . Both 

 and go to zero as . does not go to zero as , but it is 
bounded. Hence the system is asymptotically marginally stable. 

( ), ( )te u t u t− 2 ( )te u t−

t →∞( )te u t− 2 ( )te u t− t →∞ ( )u t

 
Example 7.2.2. Assume a system has poles at -1, 1, and 2 3 j− ± . Is the system 
asymptotically stable? The characteristic modes for this system are , , 

, and . All of the modes go to zero as  t  except for 
, which goes to infinity. Hence the system is asymptotically unstable. 

( )te u t−

→∞
( )te u t
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( )te u t
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Example 7.2.3.  Assume a system has poles at -1, -1, 2 j− ± . Is the system 
asymptotically stable? The characteristic modes for this system are , , 

, and . All of the characteristic modes of the system go to 
zero as , so the system is asymptotically stable.  

( )te u t− ( )tte u t−

2 cos( ) ( )te t u−

t →∞
t t2 sin( ) ( )te t u−

 
From these examples, if should be clear that a system will be asymptotically stable if all 
of the poles of the system are in the left half plane (all of the poles have negative real 
parts). This is a very easy test to remember. 
 
7.3 Settling Time and Dominant Poles 
 
Once we think about representing the impulse response as a linear combination of 
characteristic modes, we can define asymptotic stability in terms of the way these modes 
behave as t . Another benefit of this approach is that we can think of the settling 
time of a system, i.e., the time the system takes to reach 2% of its final value, in terms of 
the settling time of each of its characteristic modes. When we talk about the settling time 
of a system, we assume 

→∞

• the system is asymptotically stable 
• the poles of the system are distinct (no repeated poles) 
• the input to the system is a step  

 
Let’s assume our system has transfer function ( )H s  with corresponding impulse 
response 

1 1 2 2( ) ( ) ( ) ( )n nh t a t a t a tφ φ φ= + + +  
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Here the are the coefficients we determine using the partial fraction expansion, and the ia
( )i tφ  are the characteristic modes, i.e.,  

1 ( )i
i

i

a a t
s p

φ↔
+

 

Now let’s assume the input to our system is a step of amplitude A and we want to use 
partial fractions to determine the output, 
 

 1 2
1 2

1 1 1 1( ) ( ) n
n

AY s H s B b b b
s s s p s p s p

= = + + + +
+ + +

 

In the time-domain this will have the form 
1 1 2 2( ) ( ) ( ) ( ) ( )n ny t Bu t b t b t b tφ φ φ= + + + +  

The primary difference between this and the impulse response of the system is the term 
( )Bu t , which represents the final value of the system due to the step, and a different 

linear combination of the characteristic modes (the are now ,  but the ia ib )(i tφ remain the 
same.)   
 
Recall that the 2% settling time for an exponential function  is equivalent 
to four time constants, 

/( ) ( )it
i t e u tτφ −=

4sT τ= .  In order to determine the settling of a system with 
multiple characteristic modes, we determine the settling time corresponding to each 
characteristic mode. The longest settling time determines the settling time of the system.  
Note that this is not an exact formula, since the actual settling time of the system is also a 
function of the coefficients. However, for most instances this gives a reasonably good 
first estimate. The pole that produces the longest settling time is called the dominant pole. 
If a system has two complex conjugate poles that produce the longest settling time, those 
poles are the dominant poles.  
 
Example 7.3.1. Consider a system with transfer function  

20
( 1)(

(
5)( 10)

)
s s

H s
s+ + +

=  

and corresponding impulse response  
5 105 4( ) ( ) ( ) ( )

9 9
t t th t e u t e u t e u t− − −= − +  

The unit step response of the system is 
5 1012 5( ) ( ) ( ) ( 2

5 45
) (

5 9
t ty t u t e u t e u t e u t− − −= − + − )t  

Note that except for the first term, which comes from the input, each of the other time 
functions is the same as for the impulse response. The time constant for each of the 
characteristic modes is 1, 0.2, and 0.1 with corresponding settling times of 4, 0.8, and 0.4 
seconds. Hence we estimate the settling time of the system to be the largest of these, or 

seconds. Figure 7.1 plots the system output and each of the characteristic modes. 
As the plot indicates, the settling time is approximately 4 seconds, though this is not 
exact. 

4sT ≈
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Figure 7.1. Response of system from Example 7.3.1. 
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Example 7.3.2. Consider a system with transfer function  

2

50
( 10) ( 2) 9

( )
s s
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⎡ ⎤+ +

=
+⎣ ⎦

 

and corresponding impulse response  
 

10 2 2cos(3( ) 0.68493 ( ) 0.68493 ( ) 1.82648 () sin )t t tth t e u t e u t e tt u− − −= − + (3 )

t

 
 

The unit step response of the system is given by 
 

10 2 2( ) 0.38462 ( ) 0.06849 ( ) 0.3161 cos(3 ) sin3 ( ) 0.439 5 3 ( ))0 (t t ty t u t e u t e u tt te u− − −= − − −  
 
 
The time constant for each of the characteristic modes is 0.1, 0.5, and 0.5 with 
corresponding settling times of 0.4, 2.0, and 2.0 seconds. Hence we estimate the settling 
time of the system to be the largest of these, or 2sT ≈ seconds. Figure 7.2 plots the system 
output and each of the characteristic modes. As the plot indicates, the settling time is 
approximately 2 seconds, though this is not exact. 
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Figure 7.2. Response of system from Example 7.3.2. 
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Example 7.3.3. Consider a system with a transfer function with poles at -2, -4, and -6. 
Estimate the settling time of the system. We do not have to actually determine the 
characteristic functions of the impulse response to do this problem. The corresponding 
time constants will be ½. ¼, and 1/6. The estimated settling times corresponding to each 
of these time constants is 2, 1, and 0.667 seconds. The largest settling time is 2 seconds, 
so that is our estimate of the settling time of the system. In this case, the dominant pole is 
the pole at -2, since it leads to the largest settling time. 
 
Example 7.3.4. Consider a system with a transfer function with poles at , and

2− ± timate the settling time of the system. The time constants that correspond to 
these pole locations are ¼, 1/6, and ½ seconds. The settling time associate with each of 
these time constants is 1, 0.667, and 2 seconds. Hence the estimated settling time is again 
2 seconds, and the dominant poles are at 

4, 6− −
5 j . Es

2 5 j− ± . 
 
Example 7.3.5. Determine the estimated settling time for a transfer function with poles at 

, , and -10. The corresponding time constants are 0.25, 0.125, and 0.1 
seconds. The associated settling times are 1, 0.5, and 0.4 seconds. Hence the estimated 
settling time is 1 second and the dominant poles are at 

54 j− ± 8 j− ±

54 j− ± . 
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It should be obvious by now that the dominant poles are those poles with the real part 
closest to the jω axis. 
 
7.4  Initial and Final Value Theorems 
 
It is often necessary to determine the initial ( 0t = ) or final ( t ) value of a function 
represented in the s-domain. While it is possible to perform partial fractions and 
determine the time domain representation, this is often tedious and we would like to be 
able to perform this computation directly in the s-domain. Instead we generally use the 
initial and final value Theorems, which are stated below: 

→∞

 
Initial Value Theorem: If ( ) ( )x t X↔ s  and ( )X s is asymptotically stable, then 

0
lim ( ) lim ( )

st
x t sX

+ →∞→
s=  

 
Final Value Theorem: If ( ) ( )x t X↔ s  and ( )X s is asymptotically stable, then 

0
lim ( ) lim ( )
t s

x t sX
→∞ →

s=  

Note that these final value theorems are  also valid if there is a single pole at the origin. 
 
 
Example 7.4.1. Consider the transform pair 

 31 1 1( ) ( ) ( )
( 1)( 3)

( )
2 2

t tX x t e u t e u
s s

s − −↔ = −
+ +

= t  

Clearly all of the poles are in the left half plane, so we can use the initial value theorem, 

0
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Example 7.4.2. Consider the transform pair 

 3 4( ) 2 ( ) 3 ( )
( 3)(

1)
4)

( t tx t e u t e u
s s

sX s − −↔ = − +=
+ +

t+  

Clearly all of the poles are in the left half plane, so we can use the initial value theorem, 
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Example 7.4.3. Consider the transform pair 
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3
2

16 71 ( ) 2 ( ) ( )
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3( ) cos(5 )t ts x t e u t e u
s s

sX s t− −+ +
↔ = +
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= t  

Clearly all of the poles are in the left half plane, so we can use the initial value theorem, 
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Example 7.4.4. Consider the transform pair 

 (( )) 1 ) (x ts t
s

X u↔ ==  

Clearly all of the poles are in the left half plane, with the exception of a single pole at the 
origin, so we can use the final value theorem,  

0
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lim ( ) 1
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s
sX s
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Example 7.4.5. Consider the transform pair 
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s

X
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+

= t  

Clearly all of the poles are in the left half plane, with the exception of a single pole at the 
origin, so we can use the final value theorem,  
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Example 7.4.6. Consider the transform pair 
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−

⎣
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Clearly all of the poles are in the left half plane, with the exception of a single pole at the 
origin, so we can use the final value theorem,  
 

0

2

lim

i

2

(

)

)

(

l m

s

t

sX

x t

s
→∞

→

=

=
 

As you will see as we go through this chapter, the initial value theorem is often used to 
determine the initial amount of “effort” needed for a system, while the final value 
theorem is used for determining the final value of a system and the steady state error. 
 
7.5 Static Gain 
 
The static gain of a system is basically the steady state gain of a system when the input is 
a step function. Obviously the concept of the static gain of a system only makes sense for 
systems that are asymptotically stable. Since the static gain of the system is measured 
during steady state, all of the transients have died out. 
 
The final value theorem is generally used to find the static gain of a system. Assume we 
have an asymptotically stable system with transfer function ( )H s and the input ( )x t  to our 
system is a step of amplitude A , ( ) ( )x t Au t= . The we can determine the output of the 
system as  
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( ) ( ) ( ) ( )Y s H s A
s

s X H s= =  

Using the final value theorem, we can then determine the steady state value of the output 

as  

0 0 0
lim ( ) lim ( ) lim ( ) lim ( ) (0)
t s s s

Ay t sY s sH s H s A H A
s→∞ → → →

= = = =  

The gain of the system is the output amplitude divided by the input amplitude, so we can 
compute the static gain  
  
K  as 

(0) (0)Output Amplitude
Input Amplitude

H A
A

K H===  

So we have the result (for asymptotically stable systems) that (0)K H=   a
lim r a step input of amplitude A. 

nd
 fo( )

t
y t KA

→∞
=  

 
Example 7.5.1.  Determine the static gain and steady state value of the output for the 
system  

2

2
0.4

( )
3

s
s s

H s +
+

=
+

 

for a step input of amplitude 5. Here 2
3

K = and lim ( ) 2 15
3 3t

y t KA
→∞

=
0

× == . The response 

of this system is displayed in Figure 7.3.  
 
Example 7.5.2.  Determine the static gain and steady state value of the output for the 
system  

2

2(
1

)
s

H
s

s =
+ +

 

for a step input of amplitude 5. Here 2K =   and. lim ( ) 2 5 10
t

y t KA
→∞

= × ==  The response 

of this system is displayed in Figure 7.4.  
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Figure 7.3. Response of system for Example 7.5.1 to a step of amplitude 5. The static 
gain of this system is 2/3 and the final value of the output is then 10/3 = 3.3, as the figure 
shows. 

 
 
Figure 7.4. Response of system for Example 7.5.2 to a step of amplitude 5. The static 
gain of this system is 2 and the final value of the output is then 10, as the figure shows. 
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7.6 Ideal Second Order Systems (Again) 
 
Recall that the differential equation that describes an ideal second order system is of the 
form 

2
2 2

2

( ) (( ( ))2 )n n n
d dy t

dt d
y t y t K

t
x tζω ω ω+ =+  

 
where ζ is the damping ratio, nω is the natural frequency, and K is the static gain of the 
system. To determine the transfer function we assume all of the initial conditions are zero 
and take the Laplace transform of each term,  
 
 

{ }
{ }

2
2

2

2 2

2 2

( ) ( )

( )2 2

( ) ( )

( ) ( )

n n

n n

n n

d y t s Y s
dt

dy t sY s
dt

y t Y

K X

s

x t K s

ζω ζω

ω ω

ω ω

⎧ ⎫
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⎩ ⎭
⎧ ⎫
⎨ ⎬

⎭
=

=

=
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=L

L

L

L
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Combining these we get, 
 

2 2 2)2 ((n n ns Ys s K Xζω ω ω⎡ ⎤ =⎣ ⎡ ⎤+ ⎣ ⎦⎦+  
and transfer function 

2

2 2
2

2
1 22 1

( )
n n

n

n n

K K
s s s

H s
s

ω
ζζω ω

ω ω

=
+ + + +

=  

The characteristic equation for this system is 2 2 n nss ζω ω 2 0+ + = , and for the under 
damped case ( 0 1ζ< < )the poles of the system are given by 
 

21n n n d dj j js ζω ω ζ ζω ω σ ω± − = − = −± ±= −  
 
Figure 7.5 displays the relationship between these parameters in the complex plane. We 
have previously determined that the response of the system to a step input of amplitude A 
is given by 

sin(( ) )nt
dy t KA ce tζω ω φ−+ +=  

 
where the constants and c φ  are determined by the initial conditions. What we would like 
to examine now are how we can specify system pole locations to achieve a desired 
settling time, percent overshoot, and time to peak. 
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Figure 7.5. Relationship between damping ratio (ζ ), natural frequency ( nω ), and 
damped frequency ( dω ) in the complex plane for an under damped system ( 0 1ζ< < ). 
The poles of the system are located at ds jσ ω= − ± . 
 
Settling Time 
We have approximated the settling time for a system with distinct poles to be the time it 
takes for the slowest characteristic mode to reach four time constants. The time constant 
for each characteristic mode is the reciprocal of the magnitude of the real part of the pole. 
For example, for a system with complex poles at s jσ ω= − ± . The corresponding 
characteristic modes are of the form cos( ),te tσ sin( )te σ tω ω−− , and the time constant is 

1/τ σ= . Thus if we want our system to have a settling time of , then we have max
sT

 
44 max

s sT Tτ
σ

= = <  

or 
  

4
max

sT
σ<  

| | nr ω=
21ndω ω ζ= −  

nσ ζω=  

θ

Real  

Less
Damping

Imaginary  
 

+ More
Damping

 

+ 
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This means the magnitude of the real part of the pole must be greater than 4
max

sT
, or 

equivalently, all poles of the system must be to the left of 4
max

sT
− . Although this 

relationship was derived for an ideal second order system, it is generally a good initial 
approximation for any system without repeated poles. 
 
Example 7.6.1. Determine the allowed pole locations in the s-plane that correspond to a 
settling time of less than or equal to 2.5 seconds. Here  and  2.5max

sT =
4 4 1.6

2.5max
sT

σ = = =  

Hence all poles must be to the left of -1.6. The allowable pole locations are shown as the 
shaded region in Figure 7.6. 

 
Figure 7.6. The pole locations corresponding to a settling time less that 2.5 seconds are 
shown in the shaded region, to the left of -1.6 on the real axis. Note that the settling time 
constraint only affects the real part of the pole, not the imaginary part of the poles. 
 
Example 7.6.2. Determine the allowed pole locations in the s-plane that correspond to a 
settling time of less than or equal to 0.5 seconds. Here   and  0.5max

sT =
4 4 8

0.5max
sT

σ = = =  
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Hence all poles must be to the left of -8. The allowable pole locations are shown as the 
shaded region in Figure 7.7. 

 
 
Figure 7.7. The pole locations corresponding to a settling time less that 0.5 seconds are 
shown in the shaded region, to the left of -8 on the real axis. Note that the settling time 
constraint only affects the real part of the pole, not the imaginary part of the poles. 
 
Percent Overshoot 
 
From our previous analysis, the percent overshoot (PO) is computed as 

 
21 100%PO e

ζπ

ζ−

−

×=  
In order to determine the pole locations in the s-plane that produce an acceptable percent 
overshoot, we need to do some simple algebra. Let’s define 

 
100

max
max POO =  

Here  is the maximum overshoot, not expressed as a percentage. To set an upper 
bound on the allowed percent overshoot we  have 

maxO

 
maxPO PO≤  

or 
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21

100

max
maxe PO O

ζπ

ζ−

−

≤ =  

Next we need to solve for ζ , 
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−
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−
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Squaring both sides and expanding we have 
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≥
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−
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−

−

 

 
Finally, we use the relationship depicted in Figure 7.5, cos( )θ ζ= , or 1cos ( )ζ θ− = , 
where the angle θ  is measured from the negative real axis. Note that since we usually 
specify a maximum allowed percent overshoot we have determined the maximum 
allowed value of the damping ratio, ζ . Since the damping ratio increases (and the 
damping decreases) as the poles get closer to the real axis, specifying the maximum 
allowed percent overshoot determines the maximum angle allowed. Thus the allowable 
pole locations to achieve a maximum percent overshoot will have the shape of a wedge. 
Finally, note that this relationship is only valid for ideal second order systems. 
 
Example 7.6.3.  Determine the allowable pole locations so an ideal second order system 
will have a maximum percent overshoot of 25%.  We have 

 25 0.25
100

maxO = =  

and then 
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2

1 1

ln(0.25

0.404
ln(0.25

cos ( ) cos (0.404) 6 .

)

)1

6 2o

πζ

π

ζ− −

−

≥ =
⎡ ⎤+ ⎢ ⎥⎣ ⎦
−

= =

 

This means the maximum angle with the real axis is 66.2 degrees. The allowable pole 
locations are shown as the shaded region in Figure 7.8. 
 

 
 
Figure 7.8. The pole locations corresponding to a maximum percent overshoot of 25%  
are shown in the shaded region, within the wedge.. Note that the percent overshoot 
affects both the real and imaginary parts of the poles.  
 
Example 7.6.4.  Determine the allowable pole locations so an ideal second order system 
will have a maximum percent overshoot of 10%.  We have 

 0.10
100
10maxO = =  

and then 
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2

1 1

ln(0.10

0.591
ln(0.10

cos ( ) cos (0.591) 5 .

)

)1

3 8o

πζ

π

ζ− −

−

≥ =
⎡ ⎤+ ⎢ ⎥⎣ ⎦
−

= =

 

 
This means the maximum angle with the real axis is 53.8 degrees. The allowable pole 
locations are shown as the shaded region in Figure 7.9. 
 
 

 
Figure 7.9. The pole locations corresponding to a maximum percent overshoot of 10%  
are shown in the shaded region, within the wedge. Note that the percent overshoot affects 
both the real and imaginary parts of the poles. Note also that the angle of this wedge is 
narrower than that in Figure 7.8 since the allowed percent overshoot in that case is 
smaller (10% compared to 25% in Figure 7.8). 
 

 
Example 7.6.5.  Determine the allowable pole locations for an ideal second order system 
so the response to a step will have a percent overshoot less than 5% and a settling time of 
less than 2 seconds. To solve this problem we need to determine the acceptable regions 
for each constraint, and then determine if there is any overlapping region so that both 
constraints will be satisfied. To meet the percent overshoot requirement we have 
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0.05
10

5
0

maxO = =  

2

1 1

ln(0.05

0.690
ln(0.05

cos ( ) cos (0.690) 4 .

)

)1

6 4o

πζ

π

ζ− −

−

≥ =
⎡ ⎤+ ⎢ ⎥⎣ ⎦
−

= =

 

To meet the settling time requirement we have   and  2.0max
sT =

4 4 2.0
2max

sT
σ = = =  

Hence the region of the s-plane that meets both constraints is to the left of -2 and within a 
wedge with an angle of 46.4 degrees. Each of these individual regions, and the 
overlapping region are displayed in Figure 7.10. 

 
Figure 7.10. The pole locations corresponding to a maximum percent overshoot of 5%  
and a settling time of 2 seconds are shown in the shaded regions. The overlapping region 
shows the location in the s-plane where both conditions are met. 
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Time to Peak 
 
From our previous analysis, the time to peak for an under damped ideal second order 
system is given by 

p
d

T π
ω

=  

From Figure 7.5 we can easily see that dω , the damped frequency, is just the imaginary 
part of the poles. Hence this constraint will only constrain the imaginary parts of the 
poles. If we define the maximum allowable time to peak as , then we have max

pT

max
p P

d

T Tπ
ω

= ≤  

or 

dmax
pT
π ω≤  

which indicates the imaginary part of the pole must be larger than . / max
pTπ

 
Example 7.6.6. Determine the pole locations for an ideal second order system that 
correspond to a time to peak of less than 0.5 seconds for an ideal second order system. 
We have  and then 0.5max

pT =

6.283
0.5 dmax

pT
π π ω= = <  

This means the imaginary part of the poles must be larger than 6.283. The acceptable 
pole locations are shown as the shaded region in Figure 7.11. 
 
Example 7.6.7.  Determine the pole locations for an ideal second order system that 
correspond to a maximum time to peak of less than or equal to 1.5 seconds and a settling 
time of less than or equal to 1 seconds. We have  and then 1.5max

pT =

2.09
1.5 dmax

pT
π π ω= = <  

To meet the settling time requirement we have   and  1.0max
sT =

4 4 4.0
1max

sT
σ = = =  

Hence to meet both requirements we need the real parts of the poles to the left of -4, and 
the imaginary parts greater than 2.09 (or less than -2.09). The acceptable pole locations 
are shown in Figure 7.12. 
 
Example 7.6.7. Determine the pole locations for an ideal second order system that 
corresponds to a time to peak of  less than or equal to 3 seconds, a settling time of less 
than 2 seconds, and a percent overshoot of less than 20%. We have  3.0max

pT =
and then 
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3.0
1.05 dmax

pT
π π ω= = <   

To meet the settling time requirement we have   and  2.0max
sT =

4 4 2.0
2max

sT
σ = = =  

Finally to meet the percent overshoot requirement we have 0.2
100
20maxO = =  and  

2

1 1

ln(0.2

0.456
ln(0.2

cos ( ) cos (0.456) 62

)

1

.

)

9o

πζ

π

ζ− −

−

≥ =
−

=

⎡ ⎤

=

+ ⎢ ⎥⎣ ⎦
 

Figure 7.13 displays the acceptable regions for each of the three requirements, and the 
overlapping region where all three requirements are met. 
 

 
 
Figure 7.11. The pole locations corresponding to a maximum time to peak of 0.5 
seconds. This corresponds to the imaginary part of the poles being larger than 6.28. Note 
that this constraint affects only the imaginary parts of the pole.  
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Figure 7.12. The pole locations corresponding to a maximum time to peak of 1.5 seconds 
and a settling time less than 1 seconds. The settling time constraint means the real part of 
the poles must be let than -4, and the peak time constraint means the absolute value of the 
imaginary part of the pole must be greater than 2.09. The pole locations that meet both of 
these constraints is the overlapping regions, labeled as “Acceptable pole locations”. 
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Figure 7.13. The acceptable pole locations for an ideal second order system that 
corresponds to a time to peak of  less than or equal to 3 seconds, a settling time of less 
than 2 seconds, and a percent overshoot of less than 20%. The pole locations that meet all 
of these constraints is the overlapping regions, labeled as “Acceptable pole locations”. 

 
 

7.7 Block Diagrams 
 
We often need to analyze and design interconnected systems. When we introduced 
convolution for LTI systems, we demonstrated some simple interconnected systems. 
However, using convolution techniques for these systems is often difficult. Instead we 
utilize transfer functions relating the output of one system to the input of another system. 
We then use the fact that the time domain relationship  
 

1 2 3( ) ( )( () (y t h t h t h t x t) )= � � �   
 

is equivalent to the s-domain algebraic  relationship 
 

1 2 3( ) ( ) ( ) ( ) ( )Y s H s H s H s X s=  
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Example 7.7.1. Consider the op-amp circuit shown in Figure 7.14. The input to the 
circuit is , the output is , and   is the voltage depicted in the figure as the 
output of the first op amp. 

( )inv t ( )outv t ( )mv t

 

 
 

Figure 7.14. Proportional gain circuit for Example 7.7.1. 
 
 
At the negative terminal of the first op amp we have 
 

1 2

( ) ( )= 0in mV s V s
R R

+  

or 
2

1

( ) ( )m i
Rs V
R

V = − n s
 

So the transfer function between input and output  is ( )inV s ( )mV s 2
1

1

( ) RH s
R

= −  

  
Similarly we have 

 4

3

( ) ( )out m
R
R

V s V s= −  

So the transfer function between input  and output  is( )mV s ( )outV s 4
2

3

( )H Rs
R

= − .  We can 

depict these relationships graphically as 
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We can then combine these blocks as follows: 
 

 
This block diagram indicates graphically that 
 

2

1

( ) ( )m in sRs V
R

V = − ,  4

3

( ) ( )out m
R
R

V s V s= − ,  and   2 4

1 3

= ( ) ( )out in
R R V
R R

V s s  

Finally, we can write this as  
 

= k( ) ( )out p inVV s s  
where is a proportionality constant. pk
 
Example 7.7.2. Consider the op-amp system shown in Figure 7.15.  
 

 
 

Figure 7.15. Integral and gain op amp circuit for Example 7.7.2. 
 
At the negative node of the first op amp we have 
 

1

2

( ) ( ) 01
in mV s V s
R

C s

+ = , or 
1 2

1( ) ( )m iV s V s
R C s

= − n  

At the negative node of the second op amp we again have  
 

4

3

( ) ( )out m
R
R

V s V s= −  

We can depict these relationships graphically as 
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Again, we can combine these as 
 

 
This block diagram indicates graphically that 
 

4 4

1 2 3 1 3 2

1( ) ( ) ( ) ( )i
out in in in

R RV s V s V s V s
R C s R R R C s s

k⎛ ⎞ ⎛ ⎞⎛ ⎞
= − − = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Here we have written the proportionality constant as 
 

4

1 3 2
i

R
R R

k
C

=  

 
Example 7.7.3.  Consider the differential amplifier circuit shown in Figure 7.16. We 
assume . At the negative input terminal we have ( ) ( ) ( )out a bv t v t v t= −

( ) ( ) ( ) ( ) 0f a

g

V s V s V s V s
R R

− −− −
+ =  

and at the positive terminal we have 
( ) ( )( ) ( ) 0br

g

V s V sV s V s
R R

++ −−
+ =  

Since under the ideal op amp assumption , we can rearrange these as ( ) ( )V s V s+ −=

( ) ( ) ( )( )1 1 1 1( ) ( )f a br

g g g

V s V s V sV sV s V s
gR R R R R R R

− +
⎡ ⎤ ⎡ ⎤

+ = + = + = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ R

 

Simplifying this we get 

( ) ( ) ( ) ( ) ( )g
a b out r f

R
s V s V s V s VV s

R
⎡ ⎤− = = −⎣ ⎦  

or 
( ) ( ) ( )out r fV s k V s V s⎡ ⎤= −⎣ ⎦  

This relationship is depicted graphically in Figure 7.17 and is commonly used in 
feedback systems. Note that if gR R=  then 1k = .  
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Figure 7.16. Differential amplifier circuit used in Example 7.7.3. 
 

 
 
Figure 7.17. Block diagram for the differential amplifier circuit. This configuration is the 
basis for feedback. 
 
 
Example 7.7.4. Consider the model of an armature controlled DC motor shown in Figure 
7.18. Te armature (the part that does the work) is located on the rotor, while the field (the 
part that creates the magnetic field) is located on the stator. The field source is constant 
and hence the strength of the field does not vary, this means the constants  and  do 
not vary. The system input is the applied voltage . The developed motor torque, 

, is proportional to the current flowing in the loop, , so . The 
motor also develops a “back emf”, , which is proportional to the speed of the motor, 

eK

K

tK

t
( )av t

( )mT t

( )be t

( )ai t ( ) ( )m t aT t i=
( )be t

( )eK tω= . The motor is used to drive a load with moment of inertia , damping J B , 
and a load torque .  ( )lT t
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Figure 7.18. Model of an armature controlled DC motor. 

 
To determine the current we have 

( ) ( ) L[ ]a a a a bs I s R sV E ( )s− + =  
or 

( ) ( )( ) a b
a

a a

V s E sI s
R L s

−
=

+
 

The torque developed by the motor is then 
 

( ) ( )m t aT s K I s=  
This torque is then used to spin the load and overcome frictional forces and any external 
applied loads. The free body diagram for the load is shown below.  
 
 

 
 
Conservation of angular momentum gives 

m LB TJ Tθ θ−= −  
In the Laplace domain we get 

2 ( ) ( ) ( ) ( )m LJ s Bs s T s Ts sΘ + Θ = −  
or 

( ) ( )( ) ( ) m LT s T ss s s
sJ B
−

Θ = Ω =
+
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Finally, we have 
( ) ( )b eE s K s= Ω  

 
The block diagram for this system is shown in Figure 7.19. Note that this system includes 
feedback. 

 
 
 
Figure 7.19.  Block diagram representation for the armature controlled DC motor from 
Example 7.7.4. 
 
 
Although block diagrams and transfer functions are widely used in various engineering 
disciplines for showing the interconnection of subsystems, one needs to be careful to 
avoid loading effects when representing a system with a block diagram. Consider the 
simple resistive circuit shown in Figure 7.20 with input  and output .  ( )inv t ( )outv t

 
 

Figure 7.20. Circuit used to demonstrate loading. 
 
At the node with voltage  we can write ( )mv t

 ( ) ( ) ( ) ( )in m m m

a b c

V VV s s
R

V
R

s s

dR R
−

= +
+

 

This can be simplified to be 
)

( )(
) (

)
(( b c d

m i
a b c d a b

R R V
R R R R

s
R

s
R

RV
⎡ ⎤+

= ⎢ ⎥+ + +⎣ ⎦
)n  

and finally we get 

( )( )
( ) ( )b d

in
a b c

out
d a b

R V
R R R R R R

RV s s
⎡ ⎤

= ⎢ ⎥+ + +⎣ ⎦
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Now suppose we decided to write the circuit as two interconnected subsystems, as shown 
in Figure 7.21.  

Figure 7.21. Circuit from Figure 7.20 written (incorrectly) as two subsystems. 

 
The transfer function for the first system is clearly 

 
 

 

( )
( )in a bV s R R+

m bV s R
=  

 
and the transfer function for the second subsystem is  

( )out dV s R
=

+
 

( )m c dV s R R
From this we can determine the system transfer function to be  
 

( )
( ) ( ( ))

out b d

in ca b d

R
R

V s R
V s R R R

=
+ +

 

and the output is 

)(
( ) ( )

( )
b d

out i
a c db

n
R
R

RV s V s
R R R

⎡ ⎤
= ⎢ ⎥+ +⎣ ⎦

 

This is clearly the wrong answer, so what when wrong? In general, if a transfe
es after a system is connected to it, the connections is said to have a loading effect

For our circuit the relationship between the system input ( )inv t and the output ( )mv t
changes when the second half of the circuit is added to the system. For electronic system 

e can often insert an isolating amplifier to remove loading between subsystems. 

r function 
chang . 

cur for non-electrical systems also, so you need to be aware of it. 
w
However, loading can oc
 
7.8 Feedback Systems 
 
Assume we have a transfer function, ( )pG s , that represents a system, and we want to 
make this system behave in a certain manner. Typically we call any system we are trying
to control a plant. For example, assume we have the mass-spring-damper system shown 
in Figure 7.22. In this system, the input is the voltage applied to a motor (which is 
modeled as a simple gain) and the motor output is a force app

 

lied to the cart. The system 
output is the displacement of the cart from equilibrium.   
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Figure 7.22. Spring-mass-damper system. The motor is modeled as a simple gain. 
 
The input to our plant is the control signal  and the output is the displacement of the 
cart

( )u t
( )x t . Note that in this context is not necessarily a unit step. It can be any 

allowable input. However, it is conventional in control systems to label the input to a 
plant as . A free body diagram of our system is as follows: 

( )u t

( )u t
 

 
 
Applying conservation of linear momentum we get the equation of motion, 
 

( ) ( ) ( ) ( )mmx t k u t kx t bx t= − −  
which gives us the transfer function for the plant as  

2( ) m
p

kG s
s bm s k

=
+ +

 

There are two general methods for trying to control the behavior of a plant, open loop 
control and closed loop control. These two methods are displayed in Figure 7.23.  For the 
open loop control system, we have the system transfer function 

 ( )( ) ( ) ( )
( )

= Go c
Y ss sG s
R s

= pG  

For the closed loop system we need to do a bit more work. In analyzing a closed loop 
system we usually look at an intermediate signal that relates input and output and then try 
to eliminate any intermediate signals. So for this system we have 
 
 ( ) ( ) ( ) ( )E s R s Y s H s= −  
 
We can then write the output in terms of the error signal as 
 

( ) ( ) ( ) ( )c pY s E s G s G s=  
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Figure 7.23.  Open loop and closed loop control of a plant. Here  is the reference 
input,  is the control effort or control signal,  is the system output, and is the 
error signal. Often the transfer function in the feedback loop, 

( )r t

( )
( )u t ( )y t ( )e t

H s , is some type of 
transducer which converts the output to the same form at the input.   
 
 
 
Finally we need to remove the error signal from these two equations, 
 

( ) (( ) [ ( ) ( ) ( ] )) c pY s R s Y s H sG Gs s= −  
Rearranging these we get the closed loop transfer function. 

( ) ( )( )( )
( ) 1 ( ) ( ) ( )

c p
o

c p

G s G sY ss
R

G
s H s G s G s

= =
+

 

At this point, it should be obvious to you that using this transfer function to determine 
properties of the system is much easier than the equivalent time-domain convolution 
based representation, 

( ) [ ( ) ( ) ( ) ( )] ( ) ( ) ( )c p c py t t h t g t g t r t g t g tδ + =� � � � �  
 
Most control systems are closed loop control systems. As you will see, a closed loop 
system has the ability to correct for errors in  modeling the plant, or if the plant changes 
over time as components age.  
 
7.9 Steady State Errors 
 
Often we design a control system to track, or follow, the reference input. How well the 
system tracks the reference input is usually then divided into two parts: the transient 
(time-varying) response, and the steady state response.  The most common reference 
input is a step input, and we can use our previously defined measures of settling time, 
percent overshoot, and rise time to measure how well our system tracks the step input 
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during the transient time. Once the system has reached steady state we often want to use 
the steady state error as a measure of how well our system tracks the input.  
 
The steady state error, sse , is usually defined as the difference between the reference 
input , ,  and output of the system, ,  in steady state, or ( )r t ( )y t

[ ]lim ( ) ( )
t

sse r t y
→∞

−= t  

While we can use partial fractions and inverse Laplace transforms to compute this, it is 
often easier to do this computation in the s-domain using the final value Theorem. If we 
assume the system is asymptotically stable, then we have  
 

[ ] [ ]
0

lim ( ) ( ) lim ( ) ( )
ss

t
se r t y t s R s Y

→→∞
−= = s−  

If we assume our system has transfer function , then we have 0 ( )G s
 

[ ] [ ] [ ]0 00 00
lim ( ) ( ) l ( ) ( )im ( ) ( ) lim ( ) 1

s ss
sse s R s Y s s R s G s sR s Gs R s

→ →→
− = − = −=  

Finally, if we assume our input is a step of amplitude A , ( ) ( )r t Au t= , then  
 

( ) AR s
s

=  

and 
[ ]00

( )lim 1
ssse A G
→

= − s  

Clearly for a steady state error of zero, we want 0 (0) 1G = . Note also that this means we 
want the static gain of the system to be one. 
 
Example 7.9.1. Assume we have the system transfer function  
 

0
1( )

( 1)( 2)
G s

s s
=

+ +
 

and the input to the system is a step of amplitude 3. Determine the steady state error in 
the time and s-domain. In the time-domain we can use partial fractions,  
 

0
1 3 3 1 1 3( ) ( ) ( ) 3

( 1)( 2) 2 1 2 2
Y s G s R s

s s s s s s
= = × = − +

1
+ + + +

 

or 
23 3( ) ( ) 3 ( ) ( )

2 2
t ty t u t e u t e u t− −= − +  

Then 
23 3lim[3 ( ) ( )] lim[3 ( ) ( ) 3 ( ) ( )]

2 2
t t

ss t t
e u t y t u t u t e u t e u t− −

→∞ →∞
= − = − + −

3
2

=  

 
In the s-domain we have 
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[ ]0 00

3( ) (0)]l
2

im 1 3[1
sss se A G G
→

= − == −  

 
Example 7.9.2.  For the system depicted in Figure 7.14, determine the value of the 
prefilter gain , , so the steady state error for a step is zero. For this system we have 
the closed loop transfer function 

pfG

0

1 3
32 1

1 3 ( 2)( 1) 151 5
2 1

( )
pf

pf
G Gs sG

s s
s s

s + + =
+ +

=
++

+ +

 

 
For zero steady state error we need  

0 (0) 1
3
17

pfG
G = =  

 
So we need . Note that in this case we do not really need to simplify the 
transfer function, we can directly evaluate the transfer function at 

17 / 3pfG =
0s = , 

 

0

1 3
2 1

1 31 5 1
2 1

3
32( ) 15 17

2

pf pf
pfGG

G s
G

= = =
+ +

 

Clearly in this example we want the prefilter gain to be 17/3. 

 

 
 

Figure 7.14. Block diagram for Example 7.9.2. For a unit step input, the prefilter should 
be 17/3 to produce zero steady state error. 
 
Example 7.9.3. For the system depicted in Figure 7.15, determine the value of the 
prefilter so the steady state error for a step is zero. For this system we have the closed 
loop transfer function 
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2

0

2

1 2
2 1( ) 1 21

2 1

pfG
s s sG s

s s s

+ +=
+

+ +

 

Note that we cannot immediately set 0s =  in this form. We could multiply the transfer 
function out, but it is easier to just multiply the top and bottom by , s
 

2

0

2

2
2 1( ) 2

2 1

pfG
s sG s
s

s s

+ +=
+

+ +

 

Now we can set  to get 0s = 0 (0) pfG G= , so for a zero steady state error we need the 
prefilter to be 1. 
 

 
 
Figure 7.15. Block diagram for Example 7.9.3. For a unit step input, the prefilter should 
be one to produce zero steady state error. 
 
 
 
Example 7.9.4. For the system depicted in Figure 7.16, determine the value of the 
parameter k  so the steady state error for a unit step is less than or equal to 0.1, . 
For this system we have the closed loop transfer function 

0.1sse ≤

 

2

0

2

3 2
4 5 1( ) 3 21

4 5

sk
s sG s sk

s s 1

+
+ +=

+
+

+ +

 

 
and  

0
2(0)

1 2
kG

k
=

+
 

Then we want  

0
2 11 (0) 1

1 2 1 2 10ss
ke G

k k
= − = − = ≤

+ +
1  

or 
1 2 10k+ ≥  
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This means we need . 4.5k ≥
 

 
 
Figure 7.16. Block diagram for Example 7.9.4. For a unit step input, if we want the 
steady state error less than or equal to 0.1, we need . 4.5k >
  
 
7.10 Initial Control Effort 
 
Although it is often straightforward to design a control system to produce a given steady 
state error or an acceptable transient response, sometimes these controllers require a 
control effort that is not possible to produce. In many, though not all, instances, the initial 
control effort is the largest control effort when the input is a step. In order to quickly 
determine the initial control effort we use the initial value Theorem. Recall that the initial 
value Theorem stated that if ( ) ( )x t X s↔  and ( )X s is asymptotically stable, then 
 

0
lim ( ) lim ( )

st
x t sX

+ →∞→
s=  

 
For our standard closed loop system in Figure 7.17, the control effort is denoted by . 
We can solve for this as follows: 

( )U s

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )c p

E s R s H s Y s
Y s E s G s G s

= −
=

 

and 
( )( ) ( ) cU s E s G s=  

Hence  
( )

(

( ) ( )

( )
(

)
)

p

c

Y s U s G

E U s
G s

s

s=

=
 

Combining these we have 
( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

p
c

c c p

U s R s H s G s U s
G s
U s R s G s H s G s G s U s

= −

= −
 

 
This yields the following expression for the control effort 
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( ) ( )( )
1 ( ) ( ) (

c

c p

G s R sU s
H s G s G s

=
+ )

 

Finally, to determine the initial control effort, we have 
 

( ) ( )(0 ) lim ( ) lim
1 ( ) ( ) (

c

s s
c p

sG s R su sU s
H s G s G s

+

→∞ →∞
= =

+ )
 

If we assume the input is a step of amplitude A  then we have 
 

( )(0 ) lim
1 ( ) ( ) (

c

s
c p

G s Au
H s G s G s

+

→∞
=

+ )  
As an example, let’s consider a plant with the transfer function 

2

5( )
2 2p s

s s
G =

+ +
 

 
We will assume the closed loop control configuration shown in Figure 7.17, and look at 
the results using three different controllers. We will assume our reference input is a unit 
step for all three examples.  
 

 
 

Figure 7.17. Block diagram used for controlling the plant 2

5( )
2 2p s

s s
G =

+ +
. 

 
In the first case, we will assume we have a proportional (P) controller, where the control 
effort is proportional to the error signal. Here we will have 
 

, 2( 0)c p pG k ks ==  
where we have assigned . The steady state error for this system can easily be 
determined to be . The closed loop poles are at 

20pk =

0.02sse = 1 10.0j 5− ±  which gives an 
approximate settling time of 4 seconds. 
 
In the second case, we will assume we have a proportional plus integral (PI) controller. 
Here the control effort is made up of two components, one is proportional to the error 
signal, and one is proportional to the integral of the error signal. Here we will have  

( ) , 0.04, 0.2i
c p p i

kG s k k k
s

= + = =  
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where we have assigned  and 0.04pk = 0.2ik = . The steady state error for this system is 
zero, . The closed loop poles are at (approximately)  0sse = 0.60 0.94j− ±  and , 
which gives an approximate settling time of 6.7 seconds. 

0.81−

 
In the third case, we will assume we have a proportional plus derivative (PD) controller.  
Here the control effort is again made up of two components, one is again proportional to 
the error signal and the other is proportional to the derivative of the error signal. This 
controller will have the form 

( ) , 8, 0.4c p d p dG s k k s k k= + = =  
where we have assumed  and 8pk = 0.4dk = . The steady state error for this system is 
approximately 0.05. The closed loop poles are at (approximately) .2.0 6 16j− ±  which 
gives an approximate settling time of 2 seconds. 
 
The response of the plant to each of these controllers is shown in Figure 7.18. 
 
 Next let’s look at the initial control effort for each of these controllers. For the 
proportional controller we have  

2

(0 ) lim 20
51 (1)( )
2 1

p
ps

p

k
u k

k
s s

+

→∞
= =

⎛ ⎞+ ⎜ ⎟+ +⎝ ⎠

=  

For the proportional plus integral controller we have 

2

(0 ) lim 0.04
51 (1)
2 1

i
p

ps
i

p

k
s

k
s

k
u k

k
s s

+

→∞

+
= =

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ + +⎝ ⎠⎝ ⎠
+

=  

 
Finally, for the proportional plus derivative controller we have 
 

2

(0 ) lim
51 (1)( )
2 1

p d

s

p d

k s
u

k s
s

k
s

k+

→∞
= =

⎛ ⎞+ ⎜ ⎟+ +⎝ ⎠

∞
+

+
 

For these three controllers, the PI controller requires the least initial control effort. While 
the control effort for the P controller is finite, it may be more difficult to implement this 
controller using op amps with fixed voltage sources. Finally, the initial control effort is 
infinite for the PD controller. However, often this means the source will just saturate and 
not reach infinity. However, it is something you will need to be aware of. 
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Figure 7.18. The response of the plant 2

5( )
2 2p s

s s
G =

+ +
 to the proportional (P) 

controller , the proportional plus integral (PI) controller( ) 20cG s =
0.2( ) 0.04cG s
s

= + , 

and the proportional plus derivative controller . The input was a unit step. ( ) 8 0.4cG s s= +
  

 


