
6.0 Laplace Transforms 

 
In many applications we have interconnections of LTI systems. We can determine the 
output of the system by using convolution in the time-domain, but this often proves to be 
difficult when we have more than just a few interconnecting systems. Sometimes we 
don’t want to just compute the output, but rather we want to be able to determine 
properties of the system in a simple way. We will utilize Laplace transforms for this, 
though in some applications the use of Fourier transforms may be more appropriate. 
 
6.1 Laplace Transform Definitions 
 
The two-sided Laplace transform of a signal ( )x t is defined to be  

( ) ( ) stX s x t e
∞

−

−∞

= ∫ dt  

 while the one-sided Laplace transform is defined as 

0

( ) ( ) stX s x t e dt
−

∞
−= ∫  

The only difference between the two definitions is the lower limit, and one and two sided 
refers to integrating one on side of zero or both sides of zero. In this course we will only 
use the one-sided transform, and when we refer to the Laplace transform we mean the 
one sided transform. However, you should be aware the two-sided transform has some 
use when we are dealing with noncausal systems. Looking at the form of the integral, 
since the exponent must be dimensionless, we can conclude that the variable has the 
units of 1/time. 

s

 
There are a few conventions we need to know about. First of all, the lower limit on the 
one sided Laplace transform is generally written as 0− , or starting at a time just before 
zero. This is particularly useful when determining the Laplace transform of an impulse 
centered at zero. Secondly, a very common convention is to use lower case letters for 
time-domain functions, and capital letters for the corresponding transform domain. We 
usually write )( ()x t X s↔ or { }( ) ( )x t X=L s  to show that ( )x t  and ( )X s are transform 
pairs. We dill denote the Laplace transform operator as L . Finally, the complex v
s is sometimes written in terms of its real and imaginary parts as s

ariable
jσ ω= +  

particularly useful in determining if the integral is finite (or can be made to be finite) o
infinite. 

. This is
r is 

 
6.2 Basic Laplace Transforms 
  
Let’s start off by determining the Laplace transform of some basic signals. As you will 
see sometimes we need to put conditions on σ  to be sure the integral converges. This 
condition defines the region of convergence. 
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Example 6.2.1. For )( ()x t tδ=  we have 
 

0

0 0

( ) ( ) ( ) 1s sX s e d e dλδ λ λ δ λ λ
−

∞ ∞
−

−

= =∫ ∫ =  

since the delta function is contained in the region of integration. Hence we have the 
transform pair 

( ) ( ) ( ) 1x t t X sδ= ↔ =  
 
Example 6.2.2. For 0( ) ( )x t t tδ= − , where , we have 0 0t ≥

0 0
0 0

00

( ) ( ) ( )st ss tX s t e d e t dλδ λ λ δ λ λ
−

∞ ∞
− −−

−

= − = − =∫ ∫ e  

since again the delta function is located in the region of integration. Hence we have the 
transform pair 

0
0( ) ( ) ( ) stx t t t X s eδ −= − ↔ =  

Note that if  the integral will be zero. 0 0t <
 
Example 6.2.3. For ( ) ( )x t u t=  we have 
 

0 00

( ) ( )
s

s se d eX s u
s

e d
λλ

λ λ

λ

λ λ λ
−

=∞∞ ∞ −
− −

=

= =
−

= ∫∫  

At this point we cannot really evaluate this integral unless we put some conditions on σ . 
Let’s make the substitution s jσ ω= +  and we have 

( )

0 0

( )
j je e e eX s
s s s

λ λσ ω λ σλ ωλ σλ ωλ

λ λ 0

j λ

λ

=∞ =∞− + − + − =∞

= = =

= = =
− − −

 

Using Euler’s identity  
cos( ) sin( )je jωλ ωλ ω= + λ  

We can determine the magnitude of je ωλ as 
2 2| | cos ( ) sin ( )je ωλ ωλ ωλ 1= + =  

Hence the term je ωλ does not contribute to the convergence of the integral. That means 
that ω  does not contribute to the convergence of the integral. That leaves us withσ . If 

0σ > , then the exponent in the exponential is negative, when we evaluate it at the limit 
of infinity we get zero. Hence we have the transform pair 

1( ) ( ) ( ) , 0x t u t X s
s

σ= ↔ = >  

Note that the condition 0σ > , or the real part of  must be positive, defines the region of 
convergence. Hence the integral will converge if 

s
{s} > 0ℜ  and we can rewrite the 

transform pair as  
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1( ) ( ) ( ) , { } 0x t u t X s s
s

= ↔ = ℜ >  

 
 
Example 6.2.4. For 0( ) ( )x t u t t= −  we have  
 

0

0 0

0
0

( ) ( ) , { } 0
sts

s s

t t

e eX s u t e d e d s
s s

λλ
λ λ

λ

λ λ λ
−

=∞∞ ∞ −−
− −

=

= − = = = ℜ >
−∫ ∫  

 
The region of convergence is the same as for the non-delayed unit step. So we have the 
transform pair  

0

0( ) ( ) ( ) , { } 0
stex t u t t X s s
s

−

= − ↔ = ℜ >  

 
Example 6.2.5.  For  we have (( )) atx t e u t−=

( )
( )

00 0

( ) ( ) d
s a

a s s a eX s e u e d e
s a

λλ
λ λ λ

λ

λ λ λ
−

=∞∞ ∞ − +
− − − +

=

= = =
+∫ ∫  

Now in order for the integral to converge, we need { }s a 0ℜ + > .We can rewrite this as  
{ } { } 0s aℜ +ℜ >

{ } { }s aℜ > −ℜ

or . Hence the region of convergence is defined as 

and we have the Laplace transform pair  

{ } { }sℜ > −ℜ a

1( ) ( )( ) , { } { }atu t X s s a
s

x t e
a

− ↔ = ℜ > −ℜ
+

=  

 
Example 6.2.6.  For 0( ) cos( ) ( )x t t u tω= we will need to use Euler’s identity in the form 
 

0 0

0cos( )
2

j t j te et
ω ω

ω
−+

=  

Computing the Laplace transform we have 
 

0 0

0 0
0 0

0
00

( ) ( )
( ) ( )

0 00 0 0 0

1( ) cos( ) ( )
2

1 1 1 1
2 2 2 2 (

j js s

j s j s
j s j s

X s u e d e e d

e ee d e d
j s j s

eω λ ω λλ λ

λ λω λ ω λ
ω λ ω λ

λ λ

ω λ λ λ λ

λ λ
ω ω

−

∞ ∞
−− −

)

=∞ =∞ ∞ − −
− −

∞

= =

+
+

⎡ ⎤= = +⎣ ⎦

= +
+

= −
−

∫ ∫

∫ ∫  

Both integrals will converges if , and then we have { } 0sℜ >

0 0
2 2 2 2

0 0 0

1 1 1) 1
2 2

( 1
2

s j s j s
s j s j s

X s
s 0

ω ω
ω ω ω ω

+ + −
+ =

− + +
= =

+
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The Laplace transform pair is then 
 

0 2 2
0

( ) cos( ) ( ) ( ) , { } 0sx t t u t X s s
s

ω
ω

= ↔ = ℜ
+

>  

 
Example 6.2.7. Let’s assume we want to find the Laplace transform of the derivative of 

( )x t . Then we have 

0

( ) ( ) sdx t dx e d
dt d

λλ λ
λ−

∞
−⎧ ⎫ =⎨ ⎬

⎩ ⎭ ∫L  

In order to evaluate this we will need to use integration by parts. For two functions ( )u λ
and  ( )v λ , we can write  Rearranging 

 our integ
( )d uv vdu u= + this we get the usual form for 

integration by parts, udv uv vd= −∫ ∫ ral we have 
dv .

u . For
( ) ( )dv dx

d d
λ λ
λ λ

=  

so or dv dx= ( ) ( )v xλ λ= . We also have ( ) su e λλ −= , so  
( ) sdu se

d
λλ

λ
−= −  

or 
sdu se dλ λ−= −  

Combining these we have 
 

0
0 0

( ) ( ) ( ) ( ) (0 ) ( )s s sdx t dx e d x e s x e d x sX s
dt d

λλ λ λ

λ

λ λ λ λ λ
λ −

− −

∞ ∞
=∞− − − −

=

⎧ ⎫ = = + = − +⎨ ⎬
⎩ ⎭ ∫ ∫L  

 
So we have the transform pair 
 

( ) ( ) (0 )dx t sX s x
dt

−⎧ ⎫ = −⎨ ⎬
⎩ ⎭
L  

 
Table 6.1 summarizes some common Laplace transforms. 
 
6.3  Laplace Transforms of RLC Circuits 
 
In this section we will determine the Laplace transforms of resistors, capacitors, and 
inductors, and then use these relationships in some examples to determine the output of  
some RLC circuits in the Laplace domain. In the next sections we will review the use of 
partial fractions to go back from the Laplace domain to the time domain. 
 
Consider a resistor element shown in the left panel of Figure 6.1. If is the voltage 
across the resistor,  is the current through the resistor, and 

( )v t
( )i t R  is the resistance, then 

we have by Ohm’s law . Taking Laplace transforms of both sides of this ( ) ( )v t i t R=
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equation we have { } { }( ) ( )Rv t i t=L L  or ( ) ( )V s I s R= . Thus, in the Laplace domain, the 
equivalent impedance is still just R and the resistive circuit element in the left panel of 
Figure 6.3.1 is replaced with the circuit element in the right panel of Figure 6.1. 
 
  

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

2

2

2 2
0

0
2 2

0

0 2 2
0

( ) 1
1( )

1

1( )
)!

1

1
( )

1( )
)! ( )

cos( ) ( )

sin( ) ( )

( ) ( )
)(

m

at

at

at
m

t

t

t

u t
s

tu t
s

t u t
m s

s a

te
s a

t e u t
m s a

st u t
s

t u t
s

se t u t
s

e

α

α

δ

ω
ω
ω

αω

1

( 1)

0

0

( )

( 1

( )

( )

( 1

cos

nsi

m

m

e u t

u t

ω

ω

α ω

−

−

−

−

−

⎧ ⎫
=⎨ ⎬

⎩ ⎭

=
+

=
+

⎧ ⎫
=⎨ ⎬− +⎩ ⎭

=
+

=
+

+
=

+ +

L

L

L

L

L

L

L

L

L

L

L{ }

−

−

=

=

=

−

{ }
{ }

0
0 2 2

0

2
2

( ) ( )
( )

( ) (0 )

( ) (0 ) (0 )

( )

( )

, 0 ( )

as

at

t u t
s

dx sX s x
dt

d x s X s sx x
dt

x t e X s

X s a

x a aX as

ωω

2

( )

( )

( )

( )

t

t

a

e x t

t
a

α ω

−

− −

−

−

=
+ +

= −

= − −

− =

= +

⎧ ⎫
> =⎨ ⎬

⎩ ⎭

L

L

L

L

L

⎧ ⎫
⎨ ⎬
⎩ ⎭
⎧ ⎫
⎨ ⎬
⎩ ⎭

⎛ ⎞
⎜ ⎟
⎝ ⎠

  
 

Table 6.1. Some common Laplace transform pairs. 
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Figure 6.1. Resistive element in the time domain (left) and Laplace domain (right). 
 
 
Consider the capacitive circuit element shown in the left panel of Figure 6.2.  If is the 
voltage across the capacitor,  is the current through the capacitor, and  is the 

capacitance, then we have by Ohm’s law

( )v t
( )i t C

( )( ) dv ti t C
dt

= . Taking Laplace transforms of 

both sides of this equation we have  
 

{ } { }( ) ( )( ) ( ) ( ) (0 )dv t dv ti t I s C C C sV s v
dt dt

−⎧ ⎫ ⎧ ⎫= = = = −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

L L L  

 or 
( ) ( ) (0 )I s CsV s Cv −= −  

Rewriting  this we have 
1 (0( ) ( )) vV s I s

Cs s

−

= +  

If for now we ignore the initial conditions we have 
1( ) ( )V s I s

Cs
=  

which means the capacitor has an equivalent impedance of 1
Cs

. If we make the 

substitution s jω= , we have the equivalent impedance 1
j Cω

which is identical to what 

you used in sinusoidal (phasor) analysis. Thus, in the Laplace domain, the capacitor 
circuit element in the left panel of Figure 6.2 is replaced with the two circuit elements in 
the right panel of Figure 6.2. 
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Figure 6.2. Capacitive element in the time domain (left) and Laplace domain (right). 
  
Consider the inductive circuit element shown in the left panel of Figure 6.3. If is the 
voltage across the inductor,  is the current through the inductor, and 

( )v t
( )i t L  is the 

inductance, then we have by Ohm’s law. ( )( ) di tv t L
dt

=  Taking Laplace transforms of both 

sides of this equation we have  

{ } { }( ) ( )( ) ( ) ( ) (0 )di t di tv t V s L L L sI s i
dt dt

−⎧ ⎫ ⎧ ⎫= = = = −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

L L L  

 
 or 

( ) ( ) (0 )V s LsI s Li −= −  
We can rearrange this equation into its more common form as 

1 (0( ) ( ) iI s V s
Ls s

)−
= +  

Again, if we ignore the initial condition term we have 1( ) ( )I s V s
Ls

=  which means the 

inductor has the equivalent impedance . Making the substitution sL s jω=  we have the 
equivalent impedance j Lω  which is identical the what you used in sinusoidal analysis. 
Thus, in the Laplace domain, the inductor circuit element in the left panel of Figure 6.3 is 
replaced with the circuit elements  in the right panel of Figure 6.3. 
 

 
 

Figure 6.3.  Inductive element in the time domain (left) and Laplace domain (right). 
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Note that the substitution s jω= and ignoring the initial conditions gives the same 
equivalent impedances for these circuit elements as you used before in your sinusoidal 
steady state analysis. We will have more to say about this substitution when we talk about 
frequency response. However, this is only one possible value of . s
 
In the following examples we use Laplace transforms of the circuit elements to write the 
output of the circuit in terms of the input and initial conditions  
 
 
Example 6.3.1.  Consider the RC circuit shown in Figure 6.4. The output voltage is the 
voltage across the resistor, and the input is voltage . We assume is the current 
flowing in the circuit. We want to write the output of the circuit in terms of the input and 
initial voltage on the capacitor, 

( )inv t ( )i t

(0 )v − ,  in the Laplace domain. The circuit is redrawn in 
the Laplace domain in Figure 6.5. Going around the loop we have 
 

1 (0( ) ( ) ( )in
vV s I s R I s

Cs s
)−

− − =  

 
Solving for the current we have 

(0 )( )
( ) 1

in
vV s

sI s
R

Cs

−

−
=

+
 

The system output is the voltage across the resistor, so we have 
 

(0 )( )
( ) ( ) 1

in

out

vV s R
s

V s I s R
R

Cs

−⎡ ⎤
−⎢ ⎥

⎣ ⎦= =
+

 

Finally we can write the output as the sum of two different parts. The Zero State 
Response (ZSR) is the response of the system to the input alone, assuming no initial 
conditions. The Zero Input Response (ZIR) is the response of the system to the initial 
conditions alone, assuming there is no input. Hence our final solution is 

(0 )
( ) (0 )( ) 1 1 1 1

( )

ZS

in

R Z R

in
o t

I

u

v RV s R V RCs v RCsV ss
RCs RCsR R

Cs Cs

−

−⎡ ⎤⎡ ⎤ + ⎢ ⎥⎢ ⎥= − =
⎣ ⎦ ⎣ ⎦

−
+ ++ +
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Figure 6.4. Circuit for Example 6.3.1. 

 
 

Figure 6.5. Circuit from Example 6.3.1 in the Laplace domain. 
 
Example 6.3.2. Consider the RL circuit shown in Figure 6.6. We again assume the output 
of the system is the voltage across the resistor, and want to determine the output of the 
system in terms of the input voltage and the initial current in the inductor in the 
Laplace domain. In Figure 6.7 the circuit has been redrawn in the Laplace domain. To 
analyze this circuit, let’s define the voltage across the inductor as , so we h

( )LV s uating currents we then have 

)(0i −

( )LV s ave
 Eq( ) ( )in outV s V s= − .

 
( ) ( ) ( )( ) (0 ) (0 )out in outLV s V s V sV s i i

R Ls s Ls s

− −−
= + = +  

Rearranging we get 
 

( )1 1 (0 )( ) ( ) in
out out

V sR Ls iV s V s
R Ls RLs Ls s

−+⎡ ⎤ ⎡ ⎤+ = = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

and finally 
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( ) ( ) (0 )

ZSR ZIR

out in
R RLs V s i

R Ls R Ls
V −⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥+ +

+
⎣ ⎦ ⎣ ⎦

 

 

 

Figure 6.6. Circuit for Example 6.3.2. 

 

 

 

Figure 6.7. Circuit from Example 6.3.2 in the Laplace domain. 
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Example 6.3.3. Consider the RLC circuit shown in Figure 6.8. We again assume the 
output of the system is the voltage across the resistor, and want to determine the output of 
the system in terms of the input current and both the initial voltage across the c

)(0v −  and the initial current in the inductor )(0i
apacitor

−
 in the Laplace domain. In Figure 6.9

the circuit h
 

as been redrawn in the Laplace domain. To analyze this circuit we need to 
equate all of the currents, as follows:  

(0 )( )
( ) ( ) (0 )( ) 1

out
out out

in

vV s
s

I V s V s is
R Ls s

Cs

−

−

⎡ ⎤
−⎢ ⎥

⎣ ⎦= + + +  

Combining terms we have 
1 1 (( ) ( ) (0 )in out

is V s Cs Cv 0 )
R Ls s

I
−

−⎡ ⎤= + + − +⎢ ⎥⎣ ⎦
 

or  
2 (0 )( ) ( ) (0 )in out

RLCs Ls R is V s CvI
RLs s

−
−⎡ ⎤+ +

= −⎢ ⎥
⎣ ⎦

 +

Finally we get 

2 2

( ) (0 ) (0 )( ) in
out

ZSR ZIR

I s RLs RLi RLCsvV s
RLCs Ls R RLCs Ls R

− −⎡ ⎤⎡ ⎤ − +
= + ⎢ ⎥⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦

 

 

 
 

Figure 6.8. Circuit for Example 6.3.3. 
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Figure 6.9. Circuit from Example 6.3.3 in the Laplace domain
 

 
 

.4 Transfer Functions and the Impulse Response

.

 

 

 
6  

t (all initial conditions are zero). 
e define the transfer function as the ratio of the Laplace transform of the output divided 

 
Assume we have and LTI system that is initially at res
W
by the Laplace transform of the input, or 

{ }
{ }

(
( )

)
H

output t
s =

L
 

)(input tL
Here we have denoted the transfer function as ( )H s , though obviously other letters are 
possible. For example if we have and LTI system with input ( )x t and output  and have the 
Laplace transform pairs ( ) ( )x t X s↔  and ( ) ( )y t sY↔ , then the transfer function is 
defined as 

( )( )
( )

Y sH s
X s

=  

We can rearrange this relationship to be 
 

 

Example 6.4.1. In Example 6.3.1 the transfer function is 

( ) ( ) ( )Y s H s X s=  
 

 
( )( ) outV s
( ) 1in

RCsH s = =
V s RCs +

 

 
Example 6.4.2. In Example 6.3.2 the transfer function is 
 

(( )) out s
( )in

R
V s R Ls+
VH s = =  
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Example 6.4.3. In Example 6.3.3 the transfer function is 
 

2

( )( ) outV s RLsH s
I ( )in s RLCs Ls R

= =
+ +

 

 
Note that the transfer function comes from the Zero State Response (ZSR), since the Zero 

put Response (ZIR) includes the initial conditions, and we assume all initial conditions In
are zero when determining the transfer function. 
 
If we know a system is LTI, then we know that the output is the convolution of the input 

ith the impulse response,  w

  

( ) ( ) ) (( ) ( )y t h t x t h x t dλ λ λ
∞

∞−

= −∗ =  ∫
0t <Next, let’s assume the input is causal and the system is causal, so both are zero for . 

Then we have 

0

( ) ( ) ( ) ( () ( ) ) ( )y t h t x t h x t d x t dhλ λ λ λ λ λ
∞ ∞

− −= ∗ = =∫ ∫  
∞−

 Since this is an equality, we can take the Laplace transform of each side of the equation,  
 

Rearranging the order of integration we have 
 

)

{ } { }( ) x(t( ) ( ) ( ) ( ) )() ) (st stdt h t x t dY s y t Y s y t e h e dtλ λ λ
∞ ∞ ∞

− −⎡ ⎤
= ∗ −⎢ ⎥= = = =∫ ∫ ∫L L  

0 0 0⎣ ⎦

0 00 0

(( ) st) ( )( sth ex t d dt h x t e dt dλ λ λ
∞ ∞

−⎡ ⎤
− =⎢ ⎥∫ ∫ λ λ λ

∞ ∞⎡
−⎢

⎣ ⎦ ⎣
∫∫  − ⎤

⎥
⎦

 
Next, let’s let tσ λ= −  in the innermost integral. As far as this integral is concerned, λ is 
just a constant param ter so te d dσ = . The integral then becomes 

Hence we have derived the convolution property of Laplace transforms,  
 

 

( )( ) ( ) ( ) d ( )st sh x t e dt d x e d hσ λλ λ λ λ σ σ λ λ
∞ ∞ ∞ ∞ ∞

− − +⎡ ⎤ ⎤
− = =⎢ ⎥ ⎥∫ ∫ ∫

0 0
∫

0 0 0 0

( ) ( ) ( ) ( )s sh e d x e d H s X sλ σλ σ σ
∞

− −⎡
=⎢

⎣ ⎦ ⎣ ⎦
∫ ∫

( ) ( ) ( )y t h t x t
( ) ( ) ( )Y s H s X s

= ∗
 

=
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We have also derived an important relationship between the impulse response  and ( )h t
the transfer function ( )H s . These are Laplace transform pairs, 
 

( ) ( )h t H s↔  
 

.5   Poles, Zeros, and Pole-Zero Plots
 
6  

 most instances, the transfer function is of the form 
 
In
 

1 2

1 2

)( )..(( .( )
)( )

)( )
( ...() ( )

m

n

s z s z
s p

A s zN sH s
D s sp ps

−− −
− −

= =
−

 

where and are polynomials in . The zeros ( )N s ( )D s s of the transfer function , 
, are th o. The 1 2, ,..z z ots of values ( )N s , i.e., the values of s that make ( )N s zer., mz e ro

poles of the transfer function, 1 2, n,...,p p p , are the roots of ( )s , i.e., th lues of s th
make ( )D s  zero. If the degree rator is less than the degree of the 
denom r, or m n< , then the transfer function is 

D e va at 
 of the nume

inato strictly proper, while if th
the numerator is less than or equal to the degree of the denominator, or m n≤ , the 
transfer function is proper. Clearly a transfer function that is strictly pro  also p
Note also that if the transfer function has real valued coefficients, then the poles or zeros 

e deg  of 

per is roper. 

ometimes it is useful to plot the poles and zeros of a transfer function.  This pole-zero 

ree

of the transfer function must occur as complex conjugate pairs. 
 
S
plot is an alternative way of presenting the information contained in the algebraic 
representation of ( )H s . As you will see later, the pole-zero plot allows us to easily
visually determine the response of an LTI system to a sinusoid of different frequenci
The pole-zero plot is just a plot of poles (represented by x’s) and zeros (represented by 
o’s) in the complex plane, where the  horizontal axis represents real values, the  vertical 
axis represents imaginary values. Thus any complex number can be represented in this 
plane. 
 

 
es. 

xample 6.5.1. Determine the pole-zero plot for  E
 

10( 1)( 2 )( 2 )( )
( 1)( 4 2 )( 4 2 )

s s j s jH s
s s s j s j

− + + + −
=

+ + + + −
 

Note that this is a strictly proper transfer function. The zeros of the transfer function are 
at 1, -2-j, and -2+j, while the poles are at 0, -1, -4-2j, and -4+2j. The pole-zero plot for 
this transfer function is shown in Figure 6.10. 
 

©2009 Robert D. Throne 
 

14



 
 

Figure 6.10. Pole-zero plot for transfer function of Example 6.5.1. 
 
  
6.6  Partial Fractions for Computing Inverse Laplace Transforms 
 
The first thing we need to do before using the partial fraction technique to find the 
inverse Laplace transform is to be sure the transfer function is a ratio of polynomials. If 
there is a time delay ( ) we remove this and account for it when we are done. In 
addition, we need a strictly proper ratio of polynomials. This means that the order of the 
numerator polynomial must be less than the order of the denominator polynomial. If this 
is not the case, then we use long division and use partial fractions on the remainder. 
Finally, we need to be sure the  denominator polynomial is monic. This means the leading 
coefficient in the denominator polynomial is a one. This 

0ste−

 
Example 6.6.1. Prepare the transfer function  

2 ( 1)( )
( 3)( 4)

se sH s
s s

− +
=

+ +
 

 so we can use partial fractions to determine the inverse Laplace transform. The first thing 
we need to do is to remove the time delay term, and write 

2 (( ) )sH s e G s−=  
where 
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1( )
( 3)( 4

sG s
s s )

+
=

+ +
 

Since is a strictly proper ratio of polynomials and the denominator polynomial is 
monic, we are ready for partial fractions now. 

( )G s

 
Example 6.6.2. Prepare the transfer function 

2

2

1( )
( 2)
sH s
s
+

=
+

 

for partial fraction expansion. Here there is no time-delay, but the transfer function is not 
strictly proper so we need to do some long division. We have then 

2 2

2 2 2

1 1 4 3( ) 1 1 ( )
( 2) 4 4 4 4
s s sH s G s
s s s s s
+ + +

= = = − = −
+ + + + +

 

where  

2

4 3( )
( 2)

sG s
s
+

=
+

 

Since is a strictly proper ratio of polynomials and the denominator polynomial is 
monic, we are ready for partial fractions now. 

( )G s

 
Example 6.6.3.  Prepare the transfer function  

2( 2 2( )
(2 1)( 2)

s s seH s
s s

− )+ +
=

+ +
 

for partial fraction expansion. Here we have a time delay, the ratio of polynomials is not 
strictly proper, and the denominator is not monic. 
 
First we pull out the time-delay part and do the long division, with the result  
 

2 2

2 2

0.5 1( )
(2 1)( 2)

( 2 2) 2 2 0.5
5 2 5 22 2

s
s se sH s es s s

s s
e

s s s s

−
− −+ + + + −

= = =
+

s⎡ ⎤−⎢ ⎥+ + + +⎣ ⎦+
 

Next we scale the denominator so it is monic 
 

2

0.25 0.5 0.25 0.5( ) 0.5 0.5
2.5 1 ( 0.5)( 2)

s ss sH s e e
s s s s

− − ⎡ ⎤− −⎡ ⎤= − = −⎢ ⎥⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦
 

Finally we have 
[ ]( ) 0.5 ( )sH s e G s−= −  

where 
0.25 0.5( )

( 0.5)( 2
sG s

s s )
−

=
+ +

 

 
Partial Fractions with Distinct Poles 
 
Let’s assume we have a strictly proper transfer function 
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1 2

1 2

)( )( (( )( ) )
)( ) )( ) ( (

m

n

K s z s zN sH s
D

s
s s p s p

z
s p

− −
−

= =
− −

−  

 
The poles of the system are at  1 2, ,..., np p p and the zeros of the system are at.  
Since we have distinct poles, we know that 

1 2, ,..., mz z z

i jp p≠ for i j≠ . We also assume that  
and  have no common factors so there is no pole/zero cancellation. We would like 
to find the corresponding impulse response . To do this we assume 

( )N s
( )D s

( )h t

1 2
1 2

1 1( ) ... n
n

H s a a a
s p s p s p

= + + +
1

− − −
 

 
If we can find the  then it will be easy to determine  since we know  ia ( )h t

1 ( )ip t

i

e u t
s p

↔
−

 

To find  we first multiply by1a 1s p− , 

 1 1
1 1 2

2

) )( ) ( ) ...( (
n

n

s p H s a a a
s p s p
s p s p

−
−

+ +
−
−

= +
−

 

  
 
Next take the limit as 1s p→ . Since all of the poles are distinct all of the terms on the 
right hand side of the equation are zero, except for the first term. Hence we have 
 

1
1 1lim( ) ( )

s p
s p sa H

→
= −  

Similarly we get  

2
2 2lim( ) ( )

s p
s p sa H

→
= −  

And in general 
lim( ) ( )i is pi

s p sa H
→

= −  

 
 
Example 6.6.4. For the transfer function  

1( )
( 2)( 3)

sH s
s s

+
=

+ +
 

determine the corresponding impulse response. We have 

1 2
1 1( )

2 3
H s a a

s s
= +

+ +
 

Then 

1 2 2 2

( 2)( 1) ( 1)lim( 2) ( ) lim lim 1
( 2)( 3) ( 3)s s s

s s sa s H s
s s s→− →− →−

+ + +
= + = = =

+ + +
−  
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32 3 3

( 3)( 1) ( 1)lim( 3) ( ) lim lim 2
( 2)( 3) ( 2)s s s

s s sa s H s
s s s→− →− →−

+ + +
= + = = =

+ + +
 

So 
1( )
2

2
3

H s
s s
−

+
+ +

=  

and 
2 3( ) ( ) 2 ( )t th t e u t e u t− −= +  

 
 
It is often unnecessary to write out all of these steps, since we know in advance there will 
be a cancellation with one of the poles. In particular, when we want to find  we know 
we will have a cancellation between the 

ia

is p−  term in the numerator and the  term 
in the denominator. In fact, when we to find , we can just ignore (or cover up) the 

 term in the denominator. This is usually just called the “cover up” method. For our 
previous example, we have  

is p−

ia

is p−

 

1 2

( 1)lim
( 2)s

sa
s→−

+
=

+
1

( 3)s
= −

+
 

32
( 1)lim

( 2) ( 3)s

sa
s s→−

+
=

+ +
2=  

 
This can often just be done in your head! 
 
Example 6.6.5. Consider the transfer function from Example 6.6.1. We have 

2
2( 1) (( )

(
)

3)( 4)

s
se sH s e

s s
G s

−
−+

= =
+ +

  

where  
( 1)( )

( 3)( 4
sG s

s s )
+

=
+ +

 

We now do partial fractions for  and use the fact that the ( )G s 2se−  terms corresponds to a 
time delay of 2 units. We have then 

1 2
1 1

( 3)( 4
( )

) 3
s a

s s s
s

s
G a 1

4
+

== +
+ + + +

 

1 3

( 1)lim
( 3)s

sa
s→−

+
=

+
2

( 4)s
= −

+
 

42
( 1)lim

( 3) ( 4)s

sa
s s→−

+
=

+ +
3=  

Then 
3 4( ) 2 ( ) 3 ( )t tg t e u t e u t− −= − +  

Finally we take the time delay into account to get the final answer 
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3( 2) 4( 2)( ) ( 2) 2 ( 2) 3 ( 2t th t g t e u t e u t− − − −= − = − − + − )  

 
 

Example 6.6.6. Consider the transfer function from Example 6.6.3. We have 
 

[ ]
2( 2 2) 0.25 0.50.5 0.5 ( )

( 0.5)(
( )

(2 1)( 2) 2)

s
s ss s see e G

s s
H s

s s

−
− −⎡ ⎤+ + −

− =⎢ ⎥+ +⎣ ⎦
= =

+ +
s−  

where  
0.25 0.5( )

( 0.5)( 2
sG s

s s )
−

=
+ +

 

We then have 
 
 

1 2
0.25 0.5 1 1( )

( 0.5)( 2) 0.5 2
sG s a a

s s s s
−

= = +
+ + + +

 

 

1 0.5

0.25 0.5lim
( 0.5)s

sa
s→−

−
=

+
5

12( 2)s
= −

+
 

22
0.25 0.5lim

( 0.5) ( 2)s

sa
s s→−

−
=

+ +
2
3

=  

So 
0.5 25 2( ) ( ) ( )

12 3
t tg t e u t e u t− −= − +  

If we then define  
( ) 0.5 ( )F s G s= −  

then 
 

0.5 25 2( ) 0.5 ( ) 0.5 ( ) ( )
12 3

t tf t g t e u t e− −= − = + − u t  

Finally we take the time delay into account,  
)( () sH s e F s−=  

0.5( 1) 2( 1)5 2( ) ( 1) 0.5 ( 1) ( 1)
12 3

t th t f t e u t e u t− − − −= − = + − − −  

 
Example 6.6.7.  Consider the circuit in Example 6.3.1. Here we have the relationship 
 

( ) (0 )( )
1 1

in
out

V s RCs v RV s
RCs RCs

−

= −
C

+ +
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Instead of determining the impulse response, let’s determine the system output for a step 

input of amplitude A . Hence we have , or ( ) = Au(t)inv t ( )in
AV s
s

= . Then we can write 

the output as 
(0 )( )

( 1)out 1
ARCs v RCV s

s RCs RCs

−

= −
+ +

 

Next we need to make the denominator polynomials monic, so we have 
 
(0 ) (0 )( ) 1 11out

As v A vV s
s s ss s

1
RC RC RRC

− −

= − = −
⎛ ⎞ + + ++⎜ ⎟
⎝ ⎠ C

/

 

This problem is already in the correct for, and we have 
 

/ /( ) ( ) (0 ) ( ) (0 ) ( )t RC t RC t RC
outv t Ae u t v e u t A v e u t− − − − −⎡ ⎤= − = −⎣ ⎦  

If we look at the circuit we have modeling (in Figure 6.4), this answer makes sense. The 
initial voltage across the resistor is the difference between the initial applied voltage and 
the initial voltage across the capacitor. In addition, the voltage across the resistor should 
approach zero as time increases, since eventually the voltage on the capacitor will reach 
the applied voltage. Finally, it is clear that the time constant for this simple circuit is 

RCτ = and this is the time constant of our results. 
 
Example 6.6.8. Consider the circuit in Example 6.3.2. Here we have the relationship 

( ) ( ) (0 )out in
R RLV s V s i

R Ls R Ls
−= +

+ +
 

Again let’s determine the output when the input is a step of amplitude A . Then we have  

( ) (0 )out
R A RLV s i

R Ls s R Ls
−= +

+ +
 

 
We need to make the denominators monic, so we rewrite this as 

( ) (0 )out

AR
RLV s iRR ss s

LL

−= +
⎛ ⎞ ++⎜ ⎟
⎝ ⎠

 

Applying partial fraction to the first term we have   
 

( ) (0 )out
A A RV s iR Rs s s

L L

−= − +
+ +

 

In the time-domain we then have 

( ) (1 ) ( ) (0 ) ( )
R Rt t
L L

outv t A e u t Ri e u t
− −−= − +  
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Partial Fractions with Repeated Poles 
 
If there are repeated poles with no other poles, then the inverse Laplace transform is very 
straightforward, using the formula 

1 1( )
( 1)! ( )

m
pt

m

t e u t
m s

−
− ↔

− + p
 

If instead of isolated repeated poles and nonrepeated poles, then we need to use a 
different form for the partial fractions for the repeated poles. If we assume we have a pole 
at p−  that is of order , then for this pole we will use an expansion of the form m

1 2 2

1 1
( ) ( ) ( )m ma
s p s p s p

a a+ +
+ + +

+
1  

We will also need a new approach for determining some of the expansion coefficients for 
the repeated poles. There are two common approaches 

• Multiply both sides of the equation by  and taking the limit as  s s →∞
• Select convenient values for  and evaluate both sides of the equation for these 

values of  
s

s
These techniques are probably most easily explained by the use of examples. In each of 
these examples you should note that there are always as many unknowns as there are 
poles! 
 
Example 6.6.9. Find the impulse response that corresponds to the transfer function  
  

2

1
)

( )
( 1)( 2s

H
s

s
+ +

=  

To do this we look for a partial fraction expansion of the form 
 

1 2 3 2

1 1 1( )
1 2 (

H s a a a
s s s

= + +
+ + + 2)

  

For the distinct pole we have 

1 1

1lim
( 1)s

a
s→−

=
+ 2 1

( 2)s
=

+
 

Next we determine the coefficient for the highest power of the repeated root. In this case 
we multiply both sides of our partial fraction expansion by  and then take the 
limit as  

2( 2)s +
2s →−

23 2

1lim
( 1) ( 2)s

a
s s→−

=
+ +

1= −  

 
Finally, to get the value of we must resort to a different method. If we multiply both 
sides by s and take the limit as  we have 

2a
s →∞

1 2 32 2lim ( ) lim lim
( 1)( 2) 1 2 ( 2)s s s

ss s sH s a a a
s s s s

s
s→∞ →∞ →∞

⎡ ⎤
= = + +⎢ ⎥+ + + + +⎣ ⎦

 

Simplifying this we have 
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1 20 a a= +  
or 

2 1 1a a= − = −  
Hence we have 

2

1 1 1( )
1 2 ( 2

H s
s s s

= − −
+ + + )

 

with corresponding impulse response 
2 2( ) ( ) ( ) ( )t t th t e u t e u t te u t− − −= − −  

As an alternative method for determining , we start with 2a

22 2

1 1 1( )
( 1)( 2) 1 2 ( 2)

H s a
s s s s s

= = + −
+ + + + +

1  

 
This expression must be true for all values of s as long as both sides remain finite. Let’s 
choose a convenient value of , like s 0s = . Then we have 

2
1 1(0) 1
4 2

H a 1
4

= = + −  

or 

2
1 1
2 2

a− =  

which again give us . 2 1a = −
 

Example 6.6.10. Determine the impulse response that corresponds to the transfer 
function 

2

1
( 2)( 3

( ) s
s s s

H s
)

+
+ +

=  

 
The partial fraction expansion we need is of the form 
 

1 2 3 42

1 1 1 1( )
2 3

H s a a a a
s s s s

= + + +
+ +

 

  

  

First we find the coefficients that correspond to the distinct poles and the coefficient that 
goes with the highest power of the repeated pole. 
 

02 2

1lim
s

sa
s→

+
=

1
6( 2)( 3)s s

=
+ +

 

 

23 2

1lim
( 2)s

sa
s s→−

+
=

+
1

( 3) 4s
= −

+
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34 2

1lim
( 2) ( 3)s

sa
s s s→−

+
=

+ +
2
9

=  

At this point we have 
 

12 2

1 1 1 1 1 1 2
( 2)(

( )
3) 6 4 2 9 3

s a
s s s s

s
s s

H 1
s

+
= + − +

+ + + +
=  

To find the unknown coefficient, we will multiply by  and let , s s →∞
 

12 2

( 1) 1 1 2lim ( ) lim lim
( 2) 3( 3) 6 4 2 9s s s

s s ssH s a
s s s s

s
ss

s s
s→∞ →∞ →∞

+ ⎡ ⎤= = + − +⎢ ⎥+ + ⎣ ++ ⎦
 

 
or 

1
1 2
4 9

0 0a − += +  

This simplifies to  

1
1

36
a =  

Finally we have  

2 2

1 1 1 1 2( )
( 2)( 3) 36 6 4 2 9

1 1 1 1
3

sH s
s s s s ss s

+
= = − +

+ + + +
+  

 
which corresponds to the impulse response 
 

2 31 1 1 2( ) ( ) ( ) ( ) ( )
36 6 4 9

t th t u t tu t e u t e u t− −= + − +  

As an alternative to taking limits in the expression  
 

12 2

1 1 1 1 1 1 2
( 2)(

( )
3) 6 4 2 9 3

s a
s s s s

s
s s

H 1
s

+
= + − +

+ + + +
=  

we can make the substitution in both sides of the expression (note that we cannot 
use , or , since these substitutions make the function infinite). The we 
have 

1s = −
0, 2s s= = − 3s = −

 

1 1
1 1 1 6 9 4 1
6 4 9 36 3

0 aa a 1 6
− +

− + = − + = − += − +  

which again yields  

1
1

36
a =  
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Example 6.6.11. Determine the impulse response for the transfer function 
 

2 2

3( )
( 1) ( 2)

sH s
s s s

+
=

+ +
 

 
The appropriate partial fraction expansion is of the form 
 

1 2 3 4 52 2 2

3 1 1 1 1( )
( 1) ( 2) 1 ( 1) 2 ( 2)

sH s a a a a a
s s s s s s s s

+
= = + + + +

+ + + + + + 2

1  

 
Again we first find the easy coefficients, and . 1 3,a a 5a
 

01
3lim

s

sa
s→

+
= 2 2( 1) ( )

3
42s s

=
+ +

 

13 2

3lim
( 1)s

sa
s s→−

+
=

+ 2
2

( 2)s
= −

+
 

25 22

3lim
( 1) ( 2)s

sa
s s s→−

+
=

+ +

1
2

= −  

Next we use limits 

2 42 2 2

( 3) 3 1 1lim ( ) lim lim 2
( 1) ( 2) 4 ( 1) 2 ( 2)1 2s s s

s s ssH s a a
s s s s s s

s s s
s s→∞ →∞ →∞ 2

⎡ ⎤+
= = + − + −⎢ ⎥+ + + +⎣ + ⎦+

 

 
or 

2 40 3
4

a a+ +=  

We need another equation, so let’s let 3s = − , in the expression 
 

2 42 2 2

3 3 1 1 1 1 1 1( ) 2
( 1) ( 2) 4 1 ( 1) 2 2 ( 2)

sH s a a
s s s s s s s s

+
= = + − + −

+ + + + + + 2  

which yields  
 

2 4
1 1 10
4 2 2

a a 1
2

= − − − − −  

or 

2 4
1 5
2 4

aa − =  

Solving these two equations yields 2 1a =  and 4
7
4

a = − . Finally, we have 

2 2 2

3 3 1 1 1 7 1 1 1( ) 2
( 1) ( 2) 4 1 ( 1) 4 2 2 ( 2)

sH s
s s s s s s s s

+
= = + − − −

+ + + + + + 2  
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which corresponds to the impulse response 
2 23 7( ) ( ) ( ) 2 ( ) ( ) ( )

4 4
t t t th t u t e u t te u t e u t te u t− − − −= + − − −

1
2

 

 
 

Partial Fractions with Complex Conjugate Poles 
 
The transform pairs we are primarily going to use with complex conjugate poles are  
  

2 2

2 2

( )

sin( ) ( )

cos( ) (

( )

)at

at

s a
s a b

be

e bt u

bt u t
s a b

t−

−

+
↔

+ +

↔
+ +

 

Note that complex conjugate poles always result in sines and cosines (or a single 
sine/cosine with a phase angle). We will try and make terms with complex conjugate 
poles look like these terms by completing the square in the denominator. That is, we need 
to be able to write the denominator as  
 

2 2( ) ( )D s s a b= + +  
Note that if we cannot write the denominator in this form, the poles are not complex 
conjugates! To determine the correct values of a and b, use the fact that the coefficient of 
s should be 2a. Once we find a, the value for b is easy to find. A few examples will make 
this clear. 
 
Example 6.6.12. Assume 2( )D s s s 2+ +=  and we want to write this in the correct form. 

First we recognize that the coefficient of s is 1, so that 2a = 1, or 1
2

a =  . We then have 

2 2 2 21 1( ) 2 ( )
2 4

D s s s s b s s b= + + = + + = + + + 2  

 

So then 212
4

b= +  and we can determine 7
2

b = . Thus we have 

 

2 21 71 ( )
2

)
2

(D s s s s
⎛ ⎞

+ + = + + ⎜⎜
⎝

= ⎟⎟
⎠

 

 
Example 6.6.13. Assume  and we want to write this in the correct 

form. The coefficient of s is 3, so we have 

2( ) 3 5D s s s= + +

2a 3=  and 3
2

a = . We then have 

2 2 2 23 93 5 ( ) 3
2

( )
4

D s s b ss s s+ + = + + + + += = 2b  
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Then 25 9
4

= + b  and we can determine 11
4

b = . 

 
Now that we know how to complete the square we will look at two simple examples of 
complex conjugate poles, then at more complicated examples. 
 

Example 6.6.14. Assuming 2

1( )
2

H s
s s

=
+ +

, determine the corresponding impulse 

response . From our previous example we know ( )h t

2

2

1( )
1 7( )
2 2

H s

s

=
⎛ ⎞

+ + ⎜ ⎟
⎝ ⎠

 

This almost has the form we want, which is 

2 2 ( ) ( )
( )

atb e sin bt u t
s a b

−↔
+ +

 

However, to use this form we need a b in the numerator. To achieve this we will multiply 

and divide by 7
2

b = , 

2 2

2 2

7 7
1 22 2( )
7 71 7 1 7( ) ( )2 2 2 2 2

H s

s s

= =
⎛ ⎞ ⎛ ⎞

+ + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and we can determine 

22 7sin( ) ( )
27

t

h t e t u t
− ⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Example 6.6.15. Assuming 2( )
3 5
sH s

s s
=

+ +
, determine the corresponding impulse 

response . From our previous example we know ( )h t
 

22
( )

3 11
2 2

sH s

s

=
⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

This is almost the form we want, which is  

2 2( )
( )

s aH s
s a b

+
=

+ +
 

However, to use this form, we will add and subtract 3/2 in our transfer function, 
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2 22 2 2

3 3 3 3
2 2 2 2( )

3 11 3 11 3 11
2 2 2 2 2 2

s s
H s

s s s

+ − +
= = −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2
 

The first term is now what we want, but we need to scale the second term,  

2 2 22 2 2

3 11 3
3 22 2 2( )
2 11 113 11 3 11 3 11 3 11

2 2 2 2 2 2

3

2 2

s s
H s

s s s s

+ +
= − = −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

22

11
2

So we finally have the impulse response 
 

3 3
2 211 3 11cos( ) ( )( ) sin( ) ( )

2 211
t t

h t u tt e e
− −

= − t u t  

 
The next two examples are much more involved, but they have the same general 
approach. In general, if there are complex conjugate poles we will look for partial 
fractions of the form 

2 2 2 2

( ) ( )
( ) ( )

c s a d b
s a b s a b

+
+

+ + + +
 

where c and d are the parameters to be determined. 
 
Example 6.6.16. Assume  

2

1 1( )
2 1

Y s
s s s

=
+ + +

 

Use partial fractions to determine the corresponding time domain function. We will have 

2 22 2 2 22

1 3)1 1 1 2 2( )
2 1 2 1 11( 2)

2 2 2

(

3 33
22 2

AY s
s s s

c s

s

d

s
ss s

= = = + +
+ + + +

+

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜

⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎛ ⎞ + + + +⎢ ⎥+ + + ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎠⎢ ⎥⎣ ⎦

We need to determine the three coefficients A, c, and d. To determine A we use the cover-
up method as before 
 

2

1lim
2s

A
s→−

=
+ 2

1 1
1 4 2 1 3s s

1
= =

+ + − +
 

To determine c, multiply both sides by s and let , s →∞
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2 22 2 2

(
lim lim

3

1 3)
2 2

( 2)( 1) 2 1 1
2 2 2 2

3s s

sc s sds sA
s s s s

s s
→∞ →∞

+

⎛ ⎞ ⎛ ⎞
⎜

⎡ ⎤
⎢ ⎥
⎢ ⎥

= + +⎢ ⎥+ + + + ⎛ ⎞ ⎛ ⎞⎢ ⎥+ + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎟ ⎜

⎝ ⎠ ⎝ ⎠
⎟

 

or 
10
3

A c c= + = +  

So we have 1
3

c = − . Finally, we choose a convenient value for s, and evaluate both sides. 

Let’s choose , so we have 0s =

2 22 2 20 0 0

1 3)1 2 2lim ( ) lim lim
( 2)( 1) 2 1 1

2 2 2 2

(

3 3s s s

c sAY s
s s s s

s

d

s
→ → →

⎡ ⎤
⎢ ⎥
⎢ ⎥

= = + +⎢ ⎥+ + + + ⎛ ⎞ ⎛ ⎞⎢ ⎥+ + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟

⎠ ⎝ ⎠⎣ ⎦
⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

or 
 

We can simplify this to 
 

1 1 3 1 1( ) ( ) ( )
2 2 2 2 6 6 2

A c d d= + + = − +
3  

which yields 1
3

d = . Finally the time-domain result is 

1 1
2 2 21 1 3 1 3( ) ( ) cos( ) ( ) ( ) ( )

3 3 2 2
n

3
si

t tty t e u t e t u t e t u t
− −−= − +  

 
Example 6.6.17.  Find the step response of the system with transfer function  

2(
2

) 1
2s

H
s

s
+

=
+

 

The step response for this system will be given by 

2 2

1 1 ( 1)
( 2 2) ( 1) 1

(
1 1

) )
(

(
)

A c s d
s s s s s

s
s

Y s H
s 2

+
= + +

+
=

+ +
=

++ +
 

Using the cover-up method we get 1
2

A = . To get c, multiply both sides by s and let 

,  s →∞

2 2lim ( ) lim ( 1)
( 2 2) ( 1) 1 ( 1) 1s s

sA sc s sd
s s s s s s

ssY s
→∞ →∞ 2

⎡ ⎤+
= + +⎢ ⎥+ + + + +⎣

=
+ ⎦

 

or 
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10
2

A c c= + = +  

which gives us 1
2

c = − . Finally, we set s to a convenient value and equate both sides. In 

this case  is a good choice. 1s = −
 

2 21 1 1

1 ( 1)
(

lim
2 2)

( )
( 1) 1 ( 1

lim lim
) 1s s s

A c s d
s s s

Y s
s s s→− →− →−

+
= + +

+
⎡

+ + + +
=

+
⎤

2⎢ ⎥
⎣ ⎦

 

11
2

A d d− = − + = − +  

So we can conclude that 1
2

d = −  and the complete answer is 

1 1 1( ) ( ) ( ) ( ) sin( ) ( )
2 2 2

t ty t u t e cos t u t e t u t− −= − −  
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