
  
3.0 Second Order Circuits 

 
A second order circuit is a circuit with two effective energy storage elements, either two 
capacitors, two inductors, or one of each. (In some circuits it may be possible to combine 
multiple capacitors or inductors into one equivalent capacitor or inductor ) We begin this 
section with the derivation of the governing differential equation for various second order 
circuits. At this point we will focus on circuits that we can put into a standard form. Once 
we have covered Laplace transforms we will analyze different types of second order 
circuits. This standard second order form will again allow us to easily determine physical 
characteristics of the circuit and predict the time response. We then solve the differential 
equations for the case of a constant input. 
 
3.1 Governing Differential Equations for Second Order Circuits: Standard Form 

 
In this section we derive the governing differential equations that model various RL, RC, 
and RLC circuits.  We then put the governing second order differential equations into a 
standard form, which allows us to read off descriptive information about the system very 
easily. The standard form we will use is 

2
2 2( ) ( (( ))2 )n n n

d dy t
dt d
y t y t K

t
x tζω ω ω+ =+  

or 
2

2

1 ( ) 2 ( ) ( )( )

n n

d dy t y ty t
dt d

x t
t

Kζ
ω ω

+ =+  

Here we assume the system input is ( )x t  and the system output is . ( )y t nω  is the system 
natural frequency, which indicates the frequency at which the system will oscillate if 
there is no dampling. The natural frequency nω  has units of radians/second. ζ is the 
damping ratio, which indicates how much damping there is in the system. A damping 
ratio of zero indicates there is no damping at all. The damping ratioζ is dimensionaless. 
K  is the static gain of the system. For a constant input of amplitude A  ( ( ) ( )x t Au t= , 

where  is the unit step function), in steady state we have( )u t ( ) 0tdy
dt

= , 
2

2

( )t 0d y
dt

= ,  and 

. Hence the static gain lets us easily compute the steady state value of 
the output. To determine the units of the static gain we use 

( ) KA=( )Kx t=y t

 
[units of y] = [units of K][units of x] 

or 
[units of K] = [units of y]/[units of x] 

 
Note that not all second order circuits can be modeled by a differential equation of this 
form. While we can always write the left hand side of the differential equation in this 
form, for some circuits the right hand side of the differential equation may contain 
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derivatives of the inputs. In addition, this form may not always be the best way to write 
the differential equation. 
 
Example 3.2.1. Consider the RLC circuit shown in Figure 3.1. 
 
 

( )x t

 
 
 
 
 
 
 
 

Figure 3.1. Circuit for Example 3.2.1. 
 
The input, ( )x t ,  is the applied voltage and the output, ,  is the voltage across the 
capacitor. If we denote the current flowing in the circuit as , then applying 
Kirchhoff’s voltage law around the single loop gives us the equation 

( )y t
( )i t

 
( ) ( )) (( di t y t i t R

dt
x t L + +− + ) 0=  

We can also relate the voltage across the capacitor with the current flowing through the 
capacitor 

( )( ) dy ti t C
dt

=  

Substituting this equation into our first expression we get  
 

2

2

( ) ( ) 0( ) ( )d y t dy ty t RC
dt dt

x t LC + +− =+  

or 
2

2

( ) ( ) ( ) ( )d y t dyLC tRC y
d dt

t x t
t

+ + =  

Comparing this expression with our standard form we get 
 

natural frequency: 2

1

n

LC
ω

= , or 1
n LC

ω =  

 

damping ratio: 2

n

RCζ
ω

= , or 
2
R C

L
ζ =  

 
static gain: 1K =  

 

 

( )y t
+ 
 - 

-+ ( )i t
R
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Example 3.2.2. Consider the RLC circuit shown in Figure 3.2. 
 

( )x t  R

( )y t

•
*v

L

 
 
 
 
 C
 
  

 
 
 
 

Figure 3.2. Circuit used in Example 3.2.2. 
 
The input, ( )x t ,  is the applied current and the output, , is the current through the 
inductor. If we denote the node voltage at the top of the circuit as , then applying 
Kirchhoff’s current law  give us 

( )y t
*( )v t

* *( ) ( )( ) y(t) + Cv t dv tx t
R dt

= +  

We can also relate the voltage across the inductor with the current flowing through the 
inductor 

* ( )( ) dy tv t L
dt

=  

Substituting this equation into our first expression we get  
 

2

2

( ) ( )( ) y(t) + LCL dy t d y tx t
R dt dt

= +  

or 
2

2

( ) ( )LC y(t) = x(t)d y t L dy t
dt R dt

+ +  

 
Comparing this expression with our standard form we get 
 

natural frequency: 2

1

n

LC
ω

= , or 1
n LC

ω =  

 

damping ratio: 2

n

L
R

ζ
ω

= , or 1
2

L
CR

ζ =   

 
static gain: 1K =  
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Example 3.2.3. Consider the RLC circuit shown in Figure 3.3. 
 R 
 
 
 
 
 
 
 
 
 
 

Figure 3.3. Circuit used in Example 3.2.3. 
 
The input, ( )x t ,  is the applied current and the output, , is the current through the 
inductor. If we denote the node voltage at the top of the circuit as , then 
applyingKirchhoff’s current law  give us 

( )y t
*( )v t

 
* ( )( ) y(t) + C dv tx t
dt

=  

We can then determine the node voltage  as *( )v t
 

* ( )( ) ( ) dy tv t Ry t L
dt

= +  

Substituting this equation into our first expression we get  
 

2

2

( ) ( ) ( )( ) ( ) [ ( ) ] ( )d dy t dy t dx t y t C Ry t L y t RC LC
dt dt dt dt

= + + = + +
y t  

or 
2

2

( ) ( ) ( ) ( )d y t dy tLC RC y t x t
dt dt

+ + =  

 
Comparing this expression with our standard form we get 
 

natural frequency: 2

1

n

LC
ω

= , or 1
n LC

ω =  

 

damping ratio: 2

n

RCζ
ω

= , or 
2
R C

L
ζ =  

 
static gain: 1K =  

 

C

•
*v

L( )x t  

( )y t
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Example 3.2.4. Consider the RLC circuit shown in Figure 3.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4. Circuit used in Example 3.2.4. 
 
The input, ( )x t , is the applied voltage and the output, , is the voltage across resistor ( )y t

bR . Node voltages  and are as shown in the figure. Applying Kirchhoff’s 
current law gives at node  gives 

( )av t ( )bv t
( )tav

 
( ) ( ) ( ) ( ) ( ) ( ) 0a a b a a

a
v t x t v t v t v t dv tC

R R R dt
− −

+ + + =  

 
which we can simplify as  

( )3 ( ) ( ) ( ) a
a b a

dv tv t x t v t RC
dt

− − = −  

Summing the currents into the negative terminal of the op amp gives us 
 

( ) ( ) 0a b
b

v t dv tC
R dt

+ =  

or 
( )( ) b

a b
dv tv t RC

dt
= −  

Substituting this expression into our simplified equation above we get 
 

( ) ( )3 ( ) ( )b b
b b a b

dv t dv tdRC x t v t RC RC
dt dt dt

⎡ ⎤ ⎡ ⎤− − − = − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

or 

+ 
 - 

 

-

+ 

R
R

R

aR

bR

bC

aC

 

( )x t  

( )y t
+ 

 - 

•  

• bv  

av  

©2009 Robert D. Throne 5



2
2

2

( ) ( )3 ( )b
a b b

b
b

d t dv tC C RC v t x t
dt dt
vR + + = ( )−  

 
Finally, we have 

)( () b
b

a b

Rty v
R R

t =
+

 

or 

( ) ( )a b

b
b

R Rv t y t
R
+

=  

 
resulting in the differential equation 
 

2
2

2

( ) ( )3 ( )a b b
a b

bRd t dy tC C RC y t x t
dt dt R
yR

R
+ + = −

+
( )  

 
Comparing this expression with our standard form we get 
 

natural frequency: 2
2

1
a b

n

R C C
ω

= , or 1
n

a bR C C
ω =  

 

damping ratio: 2 3 b
n

RCζ
ω

= , or 3
2

b

a

C
C

ζ =  

 

static gain: b

a b

RK
R R

= −
+

 

 
3.3 Solving Second Order Differential Equations in Standard Form 
 
In this section we will solve second order differential equations the standard form 
 

2
2 2

2

( ) (( ( ))2 )n n n
d dy t

dt d
y t y t K

t
x tζω ω ω+ =+  

 
 for a constant (step) input.  We will solve this equation in two parts. We will first 
determine the natural response, ( . The natural response is the response due only to 
initial conditions when no inputs are present. Then we will determine the forced 
response, . The forced response is the response due to the input only, assuming all 
initial conditions are zero. The total response is then the sum of the natural and forced 
responses,  

)ny t

( )fy t

( ) ( ) ( )n fy t y t y t= + . 
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3.3.1 Natural Response. To determine the natural response we assume there is no input 
in the system, so we have the equation 

2
2

2

( ) )( (2 0)n n
n n n

d dy t
dt dt
y t y tζω ω+ + =  

Let’s assume a solution of the form , where c  and are parameters to be 
determined. Substituting this assumption into the differential equation we get 

( ) rt
ny t c e= r

 
2 22 0rt rt rt

n nr e e cec rcζω ω+ + =  
or 
 

2 22 0[ ]rt
n nce rr ζω ω+ + =  

 
If  then we are done, and the natural response will be0c = ( ) 0ny t = . This solution 
certainly satisfies the differential equation. However, if c 0≠ , and since  can never be 
zero, we must have 

rte

2 22 0n nrr ζω ω+ + =  
Using the quadratic formula, the roots of this equation are 
 

2 2
2 2 2 2(2

2
) 4

1
2 n n n

n n n n nr
ζω ζω ω

ζω ζ ω ω ζω ω ζ
± −−

= = ± =− ±− − −  

 
We now have four cases to consider depending on the value of the damping ratio ζ . 
These four cases are:  over damped ( 1ζ > ),  critically damped ( 1ζ = ), undamped ( 0ζ =
),  and  under damped ( 0 1ζ< < ). We will consider each of these in turn. 
 
 
Overdamped ( 1ζ > ).  In this case we have two real and distinct roots,  
 

2
1

2
2

1

1
n n

n n

r

r

ζω ω ζ

ζω ω ζ

= − + −

= − − −
 

The natural response is then 
1 2

1 2( ) r t r t
ny t c e c e= +  

where  and  are constants to be determined by the initial conditions. Note that both  

and  are always negative, since 
1c 2c 1r

2r
2 1ζ ζ> − . 

 
 
Critically Damped ( 1ζ = ). In this case we initially appear to have only one solution, 
 

1 2 nr r r ω= = = −  
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From differential equations, we know that in this situation we should look for an 
additional solution of the form 

( ) rt
ny t cte=  

Let’s check to see if this works. With 1ζ = , the differential equation becomes 
 

2
2

2

( ) )( (2 0)n n
n n n

d dy t
dt dt
y t y tω ω+ =+  

We have then 

)(( ) rt rt rtn d ctedy t ce ctre
d tt d

= = +  

2 2
2 2

2 2

( ) ) 2( rt rt rt rt rt rt rt rtnd y t d ce ctre cre crd cte ctr
dt

e e cre ctr
dt dt

⎡ ⎤ = +⎣ ⎦= = + + = + e

] 2 [ ] 0nω =

 

 
Substituting these into the differential equation we get 
 

2 2 2 2[ ] 2 [ ] [ [2 ] 2rt rt rt rt rt rt rt
n n n nctr e ce ctre ctre r rcre c ce et rω ω ω ω+ + + + + + + +=  

 
Since we know nr ω= −  this equation is clearly satisfied. Hence our natural solution in 
this case will be of the form 

1 2( ) rt rt
n ey t c c te= +  

where  and  are constants to be determined by the initial conditions. 1c 2c
 
Undamped ( 0ζ =

n

).  In this case there is no damping, and the system oscillates at 
frequency ω . The natural response is of the form 
 

( ) sin( )n nty t c ω φ= +  
 

where c and φ  are constants to be determined by the initial conditions. 
 
 
Under Damped ( 0 1ζ< < ). In this case will have two complex conjugate roots, which we 
can write as 

21n n n dr j jζω ω ζ ζω ω= − ± − = − ±  
21d nω ω ζ= −  is the damped frequency. This is the frequency this system will oscillate 

with. As we go on, it will be usually easier to remember the roots of this equation as 
 

n dr j djζω ω σ ω= − ± = − ±  
 
It is also useful at this point to examine the roots of this equation in the complex plane 
and see what we can determine. Figure 3.5 illustrates the relationships we will be 
discussing. 
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| | nr ω=
21ndω ω ζ= −

Imaginary  

+ 

+ 

More
Damping

 

Less
Damping

 

Real  

θ

nσ ζω=  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5.  Relationship between the location of the complex roots(+) and the natural 
frequency ( nω , the magnitude of the roots) ,  the damped frequency ( 21d nω ω ζ= − , the 
imaginary part of the root and the frequency of oscillation), and the damping ratio (ζ , 
cos( )θ ζ= ).  When 0ζ =  (undamped )  the angle  and the roots are purely 
imaginary. In this case 

90oθ =

d nω ω=  and the system just oscillates at the natural frequency.  
When 1ζ =  (critically damped) the angle 0oθ =  and the roots are purely real and are 
repeated. If 1ζ ≥  both roots are real, not repeated, and are on the real axis. In this case

0dω = and there is no oscillation. Between these  extremes we have an under damped 
system ( 0 1ζ< < ). 
 
 First of all, since our equation for the roots is real we must have complex conjugate roots 
to the equation, which the figure shows.  If we look at the magnitude of the roots, we get  
 

2 * 2 2 2 2 2 2 2 2( ) ( 1 )| | n n n n nr rr 2
nζω ω ζ ζ ω ω ω ζ= × = − + − − == + ω  

 
So the roots will all lie on a circle with magnitude| | nr ω= .  Secondly, if we look at the 
angle made with the negative real axis, we can see that  

cos( ) n

n

ζωθ ζ
ω

= =  
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When 0ζ =

d

 (undamped )  the angle  and the poles are purely imaginary. In this 
case 

90oθ =

nω ω=  and the system just oscillates at the natural frequency.  When 1ζ =

d

 
(critically damped) the angle  and the poles are purely real. In this case0oθ = 0ω = and 
there is no oscillation. Between these two extremes we have an under damped system (
0 1ζ< < ). 
 
Our solution at this point for the natural response to the under damped system is then  
 

( ) ( )
1 2 1 2( ) n d n d n d dj t j t t j t

ny t c e c e c e c eeζω ω ζω ω ζω ω ω− + − − − −+ +== j t⎡ ⎤⎣ ⎦  
 

Since we want a real valued solution, let’s make an assumption about the relationship 
between the two unknown constants. Assume  

1

2

2

2

j

j

c c e
j
c ec
j

φ

φ−

=

−
=

 

Then we have 
( ) ( )( )

2
n d dt j t j t

n
c e ey t e
j

ζω ω φ ω φ− + − +⎡ ⎤−⎣= ⎦  

 
Finally we expand this out using Euler’s identity to get 

[ ]( ) ) sin( )} cos( ) sin({co
2

s )( {nt
n d d d

ct e t j t t j
j

y tζω }dω φ ω φ ω φ ω φ−= + + −+ + − +  

or 
 

s( ) ( )innt
n dt ce ty ζω ω φ−= +  

 
where c andφ   are constants to be determined by the initial conditions. 
 

 
3.3.2 Forced Response.  
 
To determine the forced response we must know the system input, ( )x t . For now we will 
assume an input that is zero before 0t =  and then has constant amplitude A  for , 0t ≥

0 0
( )

0
t

x t
A t

<
≥

⎧
= ⎨
⎩

 

 Then for  we have the equation 0t ≥
 

2
2

2

( )( ) (2 )n n
n n n

d dy t
dt d

t A
t

y t y Kω ω+ =+  
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Since this is a linear ordinary differential equation we only need to find one solution. One 
obvious solution to this equation is the solution in steady state, when

2

2

( ) ( )
0f fd y t dy t

dt dt
= = . In steady state we have 

( )fy t KA=  
Note that for a constant input, the steady state output is the product of the static gain and 
the amplitude of the input. 
 
3.3.3 Total Solution.  The total solution to our differential equation is the sum of the 
natural and forced responses, which is summarized below: 
 

1 2

( ) sin
0 ( )

0 (
1 (

1
n

, ( )

, (1

n

n n

n
t

d
t t

imaginary roots y t KA c
complex c e roots y t KA ce

rea

undamped t
under damped

l repe d roots y t KA c

real di

t
crititally damped e c te

over dampe st roots yd

ζω

ω ω

si
)

)onjugat
ate

inct

ζ ω φ
ζ ω φ

ζ

ζ

−

− −

= +
< +

= +
< =

=

>

+
+= +

2 2( 1) (
1 2) n n n nt tt KA c e c eζω ω ζ ζω ω ζ− − −+ −= + + 1)−

 
 

 
3.4 Response of Under Damped Systems at Rest  
 
For the under damped case, we have the solution  
 

sin(( ) )nt
dy t KA ce tζω ω φ−+ +=  

 
We will determine the solution assuming the system is initially at rest (  and

).  Let’s look first at the derivative term, 
(0) 0y =

(0) 0y =

( )sin( ) ( ) cos( )( )
n nt t

n d d d
dy t tce

dt
ce tζω ζωζω ω φ ω ω− −= − + + +φ  

At the initial time ( ) we will have 0t =
 

(0) sin( ) cos( ) 0n dy ζω φ ω φ= − + =  
or 

2 21 1sin( ) tan( )
cos( )

nd

n n

ω ζ ζωφ φ
φ ζω ζω

− −
= = = =

ζ
 

Hence 
2

1 1tan ζ
φ

ζ
−
⎡ ⎤
⎢
⎣

−

⎢
= ⎥

⎥⎦
 

From this  we can determine that the hypotenuse of the triangle is 1r = , so that
2)i ( 1s n φ ζ= − and cos( )φ ζ= . 
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Next we use the initial condition that the initial position is zero, 
 

(0) 0 sin( )y KA c φ= = +  
 

or 

2sin( ) 1
KA KAc
φ ζ

= − = −
−

 

 
Finally, our solution for  is ( )y t

2

1( ) 1 sin( )
1

nt
dy t KA e tζω ω φ

ζ
−

⎡ ⎤
= − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 

 
2

1 1tan ζ
φ

ζ
−
⎡ ⎤
⎢
⎣

−

⎢
= ⎥

⎥⎦
 

 
Figure 3.6 shows the response (output) of a system initially at rest. For this system 1KA =  
and 10nω = rad/sec. There are four responses for under damped systems ( 0 1.0ζ< < ) 
and one response for a critically damped system ( 1.0)ζ = . The only thing changing in 
the responses shown in Figure 3.6 is the damping ratio, so it should be clear that the 
damping ratio can affect the response of the system quite a lot.  For example, the peak 
amplitude and time at which the system reaches the peak amplitude is different for the 
different responses. Similarly, the frequency at which the system oscillates, the damped 
frequency, is different for the different responses. Finally, the time it takes the system to 
reach steady state is different for the different responses. 
 
For systems which fit into our standard second order form, we can predict the response of 
the system and characterize the response in terms of our parameters ( , ,n Kω ζ ). The most 
common characterizations are depicted in Figure 3.7, which shows the response of a 
second order system 10 / ,( 0.15, 2.0)n rad sec Kω ζ= = = initially at rest to a unit step 
input (an input of constant amplitude 1.0 starting at time zero). Typical characterizations 
of second order systems shown in the figure are (1) the time to peak ( ), the time it 
takes the output to reach its peak value; (2) the percent overshoot ( ), which indicates 
the amount the largest peak of the output overshoots the final (steady state) value of the 
output; and (3) the settling time (

pT
PO

sT ), which indicates the time it takes for the transients in 
the output to settling out. After the settling time the system output remains within 
of the final (steady state) value. (This is a 2% definition of settling time, 1% definitions 
are also used, though the 1% definition is not as commonly used.) In the following 
sections we indicate how we can determine these quantities in terms of the parameters 
that characterize our system. 

2%±
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Figure 3.6.  The response (output) of a system initially at rest. For this system 1KA =  and 

10nω = rad/sec. There are four responses for under damped systems ( 0 1.0ζ< < ) and 
one response for a critically damped system ( 1.0)ζ = . The only thing changing in the 
responses is the damping ratio. 
 
3.4.1 Time to Peak. From our solution to the response of our under damped second order 
system to a step input, we can determine the time at which  reaches its peak value by 
taking the derivative of  and setting it equal to zero. This will give us the maximum 
value of  and the time this occurs at will be called the time to peak, . 

( )y t
( )y t

( )y t pT

[ ]
2

( ) sin( ) cos( ) 0
1

n d d d
dy t KA t t

dt
ζω ω φ ω ω φ

ζ
= − − + + + =

−
 

sin( ) cos( )n d d dt tζω ω φ ω ω φ+ = +  
 

2 21 1tan( ) nd
d

n n

t ω ζ ζωω φ
ζω ζω ζ

− −
+ = = =  
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2
1 1

tandt ζ
ω φ φ

ζ
− −

+ = =  

 
Hence d tω  at the time to peak, pt T= , must equal one period of the tangent, which is π , 
so  

p
d

T π
ω

=  

Remember that dω  is equal to the imaginary part of the complex roots of   
 

2 22 0n nrr ζω ω+ + =  
 

 
 
Figure 3.7.  The response (output) of a system initially at rest. For this system 2KA = ,  

10nω = rad/sec, and 0.15ζ = . Typical characterizations of second order systems (1) the 
time to peak ( ), the time it takes the output to reach its peak value; (2) the percent 
overshoot ( ), which indicates the amount the largest peak of the output overshoots the 
final (steady state) value of the output ; and (3) the settling time (

pT
PO

sT ), which indicates the 
time it takes for the transients in the output to settling out. After the settling time the 
system output remains within of the final (steady state) value.  2%±
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3.4.2 Percent Overshoot. Evaluating  at the peak time  we get the maximum 
value of , 

( )y t pT
( )y t

 

2

1) 1 sin(
1

( n pT
p dKA e Ty T ζω )pω φ

ζ
−

⎡ ⎤
= − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 

 

2

1) 1 sin(
1

(
n

d
p d

d

KAT ey
πζω
ω π )ω φ

ωζ

−⎡ ⎤
= − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 

21

2

1) 1 sin(
1

( py T KA e
ζπ

ζ )φ
ζ

−
−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥−⎣ ⎦

 

 
We get the last equation by using the fact that sin( ) sin( )φ π φ+ = − . Finally, since we have 

previously determined that 2sin( ) 1φ ζ= − , 
 

211( )p KAy T e
ζπ

ζ
−

−
⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

 

The percent overshoot is defined as 
 

) ( )
10 %

)
(

(
0py T

Percent Overshoot P
y

y
O= =

− ∞
×

∞
 

Note that this is a standard definition for percent overshoot, independent of the system 
order or type of system we are analyzing. Note also that the reference level is the value of 
the function in steady state. 
 
For our under damped second order system we have y( ) KA∞ = , so we have 
 

21

100%

1 e KAKA

PO
KA

ζπ

ζ

−

−
⎡ ⎤
⎢ ⎥ −
⎢ ⎥⎣ ⎦ ×

+

=  

 
or 

21 100%ePO
ζπ

ζ

−

− ×=  
 
3.4.3 Settling Time. The settling time of a system is defined as the time it takes for the 
output of a system with a step input to stay within a given percentage of its final value. 
We will use the 2% settling time criteria, which is generally four time constants, 4sT τ= . 
For any exponential decay, the general form is written as /te τ− , where τ  is the time 
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constant. Functions of the form / cos( )t
de tτ ω φ− +  or / sin( )t

de tτ ω φ− +  such as we have in 
our solution will oscillate, but will still decay at the same rate as the exponential alone. 

For our system we have 1

n

τ
ζω

=  or nσ ζω= , where σ  is the absolute value of the real 

parts of the solutions to . Hence for our system we estimate the 
settling time as 

2 22 0n nrζω ω+ + =r

4 44s
n

T τ
ζω σ

= = =  

 
3.5 Second Order System Examples 
 
Example 3.5.1. Consider the circuit used in Example 3.2.2 with parameter values, 

, 10 mHL = 10 FC μ= , . Assume the input is  0.5 amp step, 40R = Ω ( ) 0.5 ( )x t u= t .

We can then determine the parameters: 

3 6

1 1
)(10 10 )− −× ×

3,162.2=  rad / se
(10 10

n LC
ω = = c

3

6

1 10 10 0.395=
2 (2)(40) 1
1

10 0
L

R C
ζ

−

−

×
= =

×
 

1K =  

2 20.395
0.011se

1 3,162.2 1
p

d n

T cπ π π
ω ω ζ

= = = =
− −

 

 
4 4 0.032

(0.395)(3162.2)s
n

T
ζω

= = =  sec

 
2 2

0.395
1 1 0.395100% 100% 26%≈ePO e
ζπ π
ζ

− −
− −× == ×  

 
The time domain expression for the output is then given by 
 

2 2.395 tan
⎡ ⎤

= =⎢ ⎥
⎢ ⎥⎣ ⎦

1 1 11 1 0tan tan [ ] 1.1647 rad
0.395

ζ
φ

ζ
− − −
⎡ ⎤

=⎢ ⎥
⎢ ⎥⎣ ⎦

− −
=2.3257  

1249.07

2

1( ) 1 sin( ) 0.5ω φ
⎡ ⎤

+ =⎢ ⎥
⎢ ⎥⎣ ⎦

[1 1.09 sin(2905.05 1.1647)]
1

nt t
dy t KA e t tζω

ζ
−= − − +

−
e−  

 
The response for this system is shown in Figure 3.8. The time to peak, settling time, and 
percent overshoot are displayed on the figure. 
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Figure 3.8. Response of the circuit used in Example 3.5.1 with parameter values 

, 10 mHL = 10 FC μ= , . Assume the input is  0.5 amp step. 40R = Ω
 
Example 3.5.2. Consider the circuit used in Example 3.2.4 with parameter values, 

10aC Fμ= , 1bC Fμ= , 1R k= Ω , 3aR k= Ω  , 2bR k= Ω . Assume the input is a 1 volt 

step, ( ) ( )x t = u t . We can then determine the parameters: 

3 6 6

1 1 316.2 rad / sec
1 10 (10 10 )(1 10 )

n
a bR C C

ω
− −

= = =
× × ×

 

6

6

3 1 10 0.47
2 2 10 10
3 b

a

C
C

ζ
−

−

×
= = =

×
 

3

3 3

2 10 0.4
3 10 2 10

b

a b

RK
R R

×
= − = − = −

+ × + ×
 

2 2
0.011sec

1 316.2 1 0.47
p

d n

T π π π
ω ω ζ

= = = =
− −
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4 4 0.027sec
(0.47)(316.2)s

n

T
ζω

= = =  

 
2 2

0.47
1 1 0.47100% 100% 18.5%PO e e
ζπ π
ζ

− −
− −× = × ≈=  

 
The time domain expression for the output is then given by 
 

2 2
1 1 11 1 0.47tan tan tan [1.657] 1.0815 rad

0.47
ζ

φ
ζ

− − −
⎡ ⎤

=
⎡ ⎤− −

= =⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 

148.6

2

1( ) 1 sin( ) 0.4[1 1.1329 sin(279.1 1.0815)]
1

nt t
dy t KA e t e tζω ω φ

ζ
− −

⎡ ⎤
= − + = − − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 

The response for this system is shown in Figure 3.9. Note that although the input is 
positive, the output has a negative steady state value. This is because the static gain is 
negative. However, all of the parameters we are interested in (time to peak, settling time, 
or percent overshoot) are still measured in the same way. 
 
Example 3.5.3.  Consider the response of an unknown second order system, with step 
input 4 volts, x( ) 4 ( )t u t=

1.5

. The measured output is also in volts. The response of this 
unknown system is shown in Figure 3.10. We want to try and determine the system 
parameters from the system output. 
 
For this system, the steady state value is )(ssy y b= ∞ = = . Since we know the input 

was 4, we have , or (4) 1.5ssKA y K= = =
1.5 0.375

4 4
ssyK == = . The 2% settling time sT  

occurs when |  for all | 2( 0) 0.ssy t y <− st . Based on this graph, this occurs somewhere  T≥
near 0.26 seconds, so . The time to peak  can be measured off the graph 
to be approximately 0.11 seconds, so 

0.26 secsT ≈ pT
0.11secpT ≈ .To determine the percent overshoot, 

we first need the steady state value of the output, which we have determined, and then 
how much beyond this the system has travelled. For this system we have 

 and . Hence the percent overshoot 

is given by

( ) 1.5ssy y b∞ = = = ( ) (py T y− ∞) 1.75 1.5a= ≈ − 0≈ .25
0.25100% 100% 17%≈
1.5

= ×
aPO
b

= × . It is important to remember that the 

percent overshoot is measured from the steady state value of the output, not from the 
value of the input. We can now use these parameters, or various combinations of them, to 
determine the damping ratio and natural frequency.  
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Figure 3.9. Response of the circuit used in Example 3.5.2 with parameter values 

10aC Fμ= , 1bC Fμ= , 1R k= Ω , 3aR k= Ω  , 2bR k= Ω . The input is a 1 volt step. 
Note that although the input to the circuit is a positive voltage, the output is negative 

because the static gain is negative.  
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Figure 3.10. Output of an unknown second order system, analyzed in Example 3.5.3. 

 
 
Example 3.5.4. Consider the circuit used in Example 3.2.3 with parameter values, 

, , . Assume the system is initially at rest and the input is a 
1 amp step,

1 mFC = 10 mHL =
( ) ( )

10R = Ω
x t u t= . We want to determine and characterize the output of the system. 

We start by determining the system parameters: 
 

3 3

1 1 316.2 rad / sec
(10 10 )(1 10 )

n LC
ω

− −
= = =

× ×
 

3

3

10 1 10 1.581
2 2 10 10
R C

L
ζ

−

−

×
= = =

×
 

 
Since 1.0ζ >  we have an over damped system. We know from our previous solution we 
will have a solution of the form 
 

1 2
1 2( ) cr t r tey t KA c e+ +=  
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where  
2 2

1 1 (1.581)(316.2) (316.2) 1.581 1 112.7n nr ζω ω ζ= − + − = − + − ≈ −  
and 

2
2

21 (1.581)(316.2) (316.2) 1.581 1 887.1n nr ζω ω ζ−= − − = − − − ≈ −  
 

In order to determine the complete response we will use the general form of the solution 
in what follows. Because the system starts at zero we have the condition 
 

1(0) 0 2y KA c c= + +=   or  1 2c Ac K+ = −  
 

Because the system starts at rest we need to look at the slope 
 

1 2
1 1 2 2( ) r t r ty t r c e r c e= +  

At the initial time then we also have 
 

1 1 2 2(0) 0y rc r c= + =  or 2
1 2

1

crc
r

= −  

Combining these conditions we have 

1 2

1 1

2 2
1 2 2 2 2 2

1

1r r r rc c c c c c KA
r r r

⎡ ⎤
=⎢ ⎥

⎣

−
+ = − + = − = −

⎦
 

 

or 
2

2
1

1rc K
r r

A
−

=  and
2

1
1

2r KA
r

c
r

−
=

−
. Our solution is then 

1 22 1

2 1 2 1

( ) 1 r t r ty t KA r re e
r r r r− −

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 

For our system this becomes 
112.7 887.1( ) 1 1.145 0.145t ty t e e− −= − +  
 

The response of this system is displayed in Figure 3.11. As this figure shows, there is no 
overshoot, so determining the time to peak or percent overshoot is meaningless. We can, 
however, determine the settling time. However, we cannot use our previous formula 

4
s

n

T
ζω

= , since this was derived for an under damped system.  What we need is to use 

the more general form that the settling time is equal to four time constants, 4sT τ= . 
Recall that the general form of a decaying exponential is /te τ− , whereτ  is the system time 
constant.  For this system we are going to have two time constants since we have two 
exponential terms, 
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112.7 /

887.1 /

1 0.00887sec
112.7

1, 0.00113 sec
887.1

,t t

t t

e e

e e

τ

τ

τ

τ

− −

− −

= = =

= = =
 

The system response and a plot of these exponentials is shown in Figure 3.12. As this 
figure shows, the response of the exponential with the smaller time constant is much 
more rapid than the response of the exponential with the larger time constant. The 
response of the system is more nearly like the response of the exponential with the larger 
time constant. Hence, to determine the settling time, we use the largest time constant 
 

4 (4)(0.00887) 0.0355secsT τ= ≈ =  
 

This is a general result that we will use later, the response of the system is dominated by 
the response of the part with the largest time constant. 
 

 
 
Figure 3.11. Response of system analyzed in Example 3.5.4. This is an over damped 
system. The settling time of the system is estimated to be 0.0355 secsT = .  
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Figure 3.12. Response of system analyzed in Example 3.5.4 and plots of the exponentials 
that make up the response. For this system, . This 

system has components with time constants 

112.7 887.1( ) 1 1.145 0.145t ty t e e− −= − +
1 0.00887sec

112.7
τ = =  and 

1 0.00113sec
887.1

τ = = . The response of the system is clearly dominated by the 

component of the response with the largest time constant. 


