ECE-205 Practice Quiz 3

1) For the second order equation $\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 4x(t)$ with an input x(t) = 2u(t), we should look for a solution of the form

a)
$$y(t) = c_1 e^{-2t} + c_2 e^{-t} + 2$$
 b) $y(t) = c_1 e^{-2t} + c_2 e^{-t} + 4$ c) $y(t) = c_1 e^{2t} + c_2 e^{t} + 4$

d)
$$y(t) = c_1 e^{2t} + c_2 e^t + 2$$
 e) $y(t) = 2 + c \sin(2t + \theta)$ f) none of these

2) For the second order equation $\ddot{y}(t) + 4\dot{y}(t) + 4y(t) = 2x(t)$ with an input x(t) = 2u(t), we should look for a solution of the form

a)
$$y(t) = c_1 e^{-2t} + c_2 e^{-2t} + 2$$
 b) $y(t) = c_1 e^{-2t} + c_2 e^{-2t} + 4$ c) $y(t) = c_1 e^{-2t} + c_2 t e^{-2t} + 4$

d)
$$y(t) = c_1 e^{-2t} + c_2 t e^{-2t} + 2$$
 e) $y(t) = c_1 e^{-2t} + c_2 \sin(2t + \theta)$ f) none of these

3) For the second order equation $\ddot{y}(t) + 4\dot{y}(t) + 5y(t) = 5x(t)$ with an input x(t) = 5u(t), we should look for a solution of the form

a)
$$y(t) = ce^{-2t} \sin(t+\theta) + 1$$
 b) $y(t) = ce^{-t} \sin(2t+\theta) + 1$ c) $y(t) = ce^{-t} \sin(2t+\theta) + 5$

d)
$$y(t) = ce^{-2t} \sin(t + \theta) + 5$$
 e) $y(t) = ce^{2t} \sin(t + \theta) + 5$ f) none of these

4) Assume we have a solution of the form $y(t) = c_1 e^{-t} + c_2 e^{-3t} + 4$ and the initial conditions $y(0) = \dot{y}(0) = 0$. The equations we need to solve are:

a)
$$c_1 + c_2 = 4$$
, $c_1 + 3c_2 = 0$ b) $c_1 + c_2 = -4$, $c_1 + 3c_2 = 0$ c) $c_1 + c_2 = -4$, $c_1 - 3c_2 = 0$

d)
$$c_1 + c_2 = -4$$
, $c_1 + 3c_2 = -4$ e) $c_1 + c_2 = 0$, $c_1 + 3c_2 = -4$ f) none of these

5) Assume we have a solution of the form $y(t) = c_1 e^{-2t} + c_2 t e^{-2t} + 2$ and the initial conditions $y(0) = \dot{y}(0) = 0$. The equations we need to solve are:

a)
$$c_1 + 2 = 0, -2c_1 + c_2 = 0$$

a)
$$c_1 + 2 = 0$$
, $-2c_1 + c_2 = 0$ b) $c_1 + 2 = 0$, $2c_1 + 2c_2 = 0$ c) $c_1 + c_2 = -2$, $-2c_1 + -2c_2 = 0$

d)
$$c_1 + c_2 = -2$$
, $-2c_1 + 2c_2 = 0$ e) $c_1 = 2$, $2c_1 + 2c_2 = 0$ f) none of these

e)
$$c_1 = 2$$
, $2c_1 + 2$ $c_2 = 0$

- **6)** Assume we have a solution of the form $y(t) = ce^{-2t} \sin(3t + \theta) + 4$ and the initial conditions $y(0) = \dot{y}(0) = 0$. The equations we need to solve are:

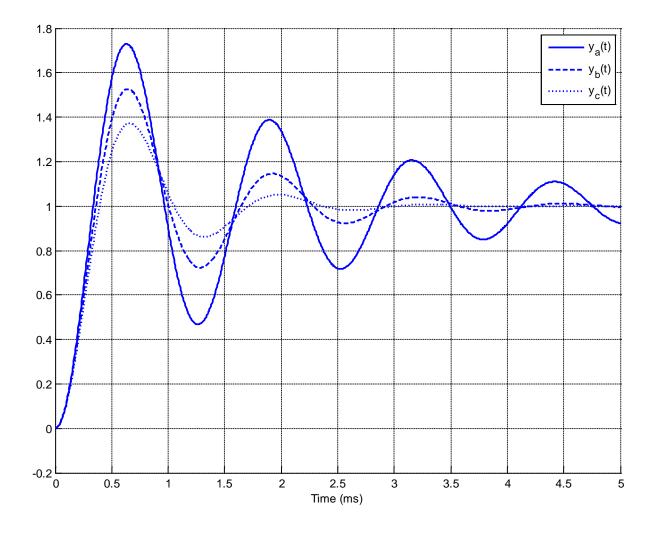
a)
$$c\sin(\theta) = -4$$
, $\tan(\theta) = \frac{3}{2}$

a)
$$c\sin(\theta) = -4$$
, $\tan(\theta) = \frac{3}{2}$ b) $c\sin(\theta) = 4$, $\tan(\theta) = \frac{3}{2}$ c) $c\sin(\theta) = 4$, $\tan(\theta) = \frac{-3}{-2}$

d)
$$c \sin(\theta) = -4$$
, $\tan(\theta) = \frac{3}{-2}$ e) none of these

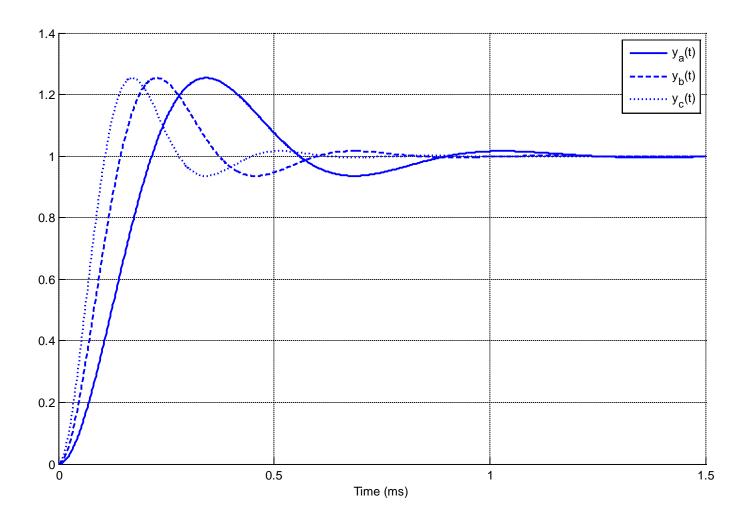
Problems 7-10 assume we have a system described by a standard for of a second order system, $\ddot{y}(t) + 2\zeta\omega_n\dot{y}(t) + \omega_n^2y(t) = K\omega_n^2x(t)$, and the input to the system is a unit step. Assume the system is under damped.

- 7) The **percent overshoot** for the system is a function of
- a) ζ only b) ω_n only c) K only d) ζ and ω_n e) ζ , ω_n , and K

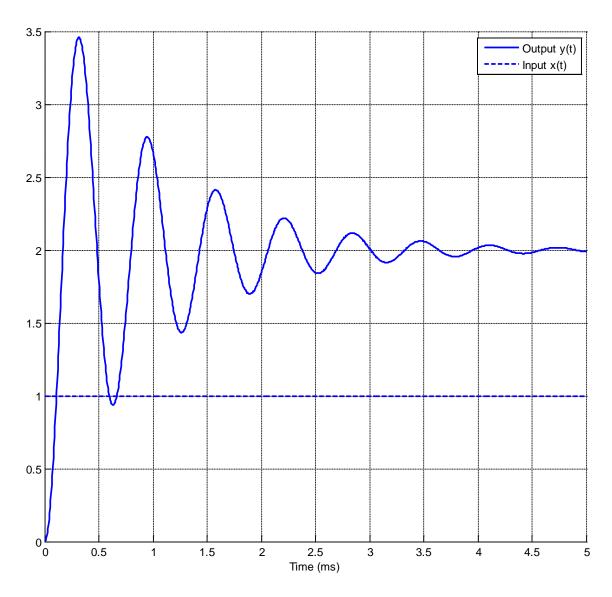

- 8) The settling time for the system is a function of
- a) ζ only b) ω_n only c) K only d) ζ and ω_n e) ζ , ω_n , and K

- 9) The static gain for the system is a function of
- a) ζ only b) ω_n only c) K only d) ζ and ω_n e) ζ , ω_n , and K

- 10) The damped frequency for the system is a function of
- a) ζ only b) ω_n only c) K only d) ζ and ω_n e) ζ , ω_n , and K

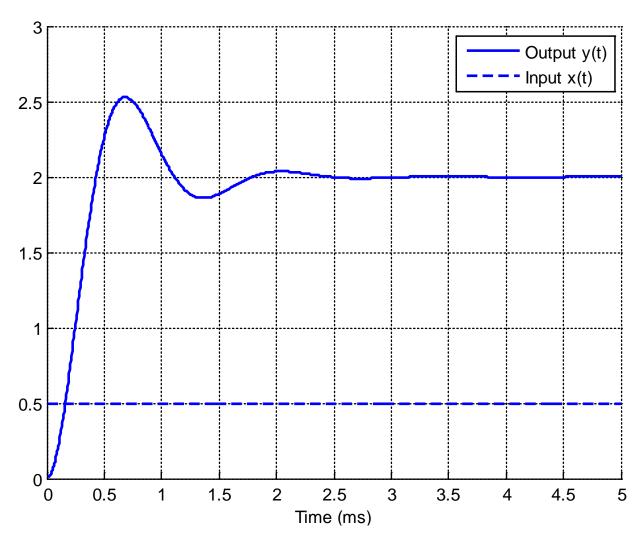

- **11)** Assume we have an under damped second order system. If we want the **percent overshoot** to increase, what should we do to the damping ratio?
- a) increase it b) decrease it c) it doesn't matter, we can't affect the percent overshoot
- **12**) Assume we have an under damped second order system. If we want the **settling time** to decrease, what should we do to the damping ratio?
- a) increase it b) decrease it c) it doesn't matter, we can't affect the percent overshoot
- 13) The following figure shows the step response of three systems. The only difference between the systems is the damping ratio, ζ .

For which system is the damping ratio the smallest? a) $y_a(t)$ b) $y_b(t)$ c) $y_c(t)$



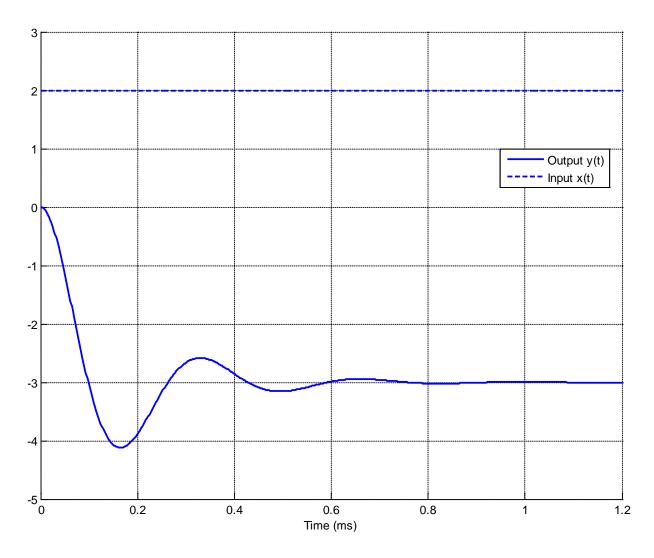
14) The following figure shows the step response of three systems. The only difference between the systems is the natural frequency, ω_n .

For which system is the natural frequency the largest? a) $y_a(t)$ b) $y_b(t)$ c) $y_c(t)$



Problems 15-18 refer the following graph showing the response of a second order system to a step input.

- 15) The percent overshoot for this system is best estimated as
- a) 350 % b) 250 %
- c) 200%
- d) 150 %
- e) 100 %
- f) 75%
- **16**) The (2%) settling time for this system is best estimated as
- a) 1ms b) 2 ms c) 3 ms d) 4 ms
- 17) The time to peak for this system is best estimated as
- a) 0.1 ms b) 0.3 ms c) 0.9 ms
- 18) The static gain for this system is best estimated as
- a) 1
- b) 2
- c) 3
- d) 3.5


Problems 19-21 refer the following graph showing the response of a second order system to a step input.

- 19) The percent overshoot for this system is best estimated as
- a) 400%
 - b) 250 %
- c) 200%
- d) 150 %
- e) 100 %
- f) 25%
- **20**) The (2%) settling time for this system is best estimated as
- a) 1.5 ms b) 2.5 ms c) 4 ms d) 5 ms

- 21) The static gain for this system is best estimated as
- a) 1
- b) 2
- c) 3
- d) 4

Problems 22-24 refer the following graph showing the response of a second order system to a step input.

- 22) The percent overshoot for this system is best estimated as
- a) 400% b) -400 %
- c) 300% d) -300 %
- e) -33%
- f) 33%
- 23) The (2%) settling time for this system is best estimated as
- a) 0.3 ms b) 0.6 ms c) 1.0 ms d) 1.2 ms
- 24) The static gain for this system is best estimated as
- a) 1.5
- b) 3
- c) -1.5
- d) -3

Answers: 1-b, 2-f, 3-d, 4-b, 5-a, 6-a, 7-a, 8-d, 9-c, 10-d, 11-b, 12-a, 13-a, 14-c, 15-f, 16-d, 17-b, 18-b, 19-f, 20-b 21-d, 22-f, 23-b, 24-c