\qquad

ECE-205

Exam 2

Fall 2015

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 2 /15

Problem 3 ___ 18
Problem 4 ___ $/ 25$
Problem 5 /25

Total

\qquad
\qquad

1) (22 points) Fill in the non-shaded part of the following table. You should assume $0^{-}<t<\infty$ (t starts just before time zero, so we include all of any delta functions at the origin.)

	Linear? (Y/N)	Time Invariant? (Y/N)	BIBO Stable? (Y/N)
$\mathrm{y}(t)=t x(t)+2$			
$\dot{y}(t)+t y(t)=\cos (t) x(t)$			
$y(t)=x(1-t)$			
$y(t)=\int_{-\infty}^{t} e^{\lambda} x(\lambda) d \lambda$			
$y(t)=\int_{0}^{t} e^{-\lambda} x(\lambda) d \lambda$			
$y(t)=\cos \left(\frac{1}{x(t)}\right)$			
$h(t)=\delta(t)$			
$h(t)=e^{t} u(t)$			

\qquad
2) (15 points) Simplify the following as much as posible. Be sure to include any necessary unit step functions
$y(t)=\delta(t-2) * \delta(t-1)$
$y(t)=\int_{-\infty}^{t+1} \delta(\lambda-2) d \lambda$
$y(t)=e^{t} \delta(t-2)$
$y(t)=h(t) \star \delta(t)$
$y(t)=\int_{-\infty}^{\infty} \delta(\lambda-2) \delta(t-\lambda) d \lambda$
\qquad
\qquad
3) (18 points) The input-output relationship for the following system can be written as

$$
y(t) * A(t)=x(t) * B(t)
$$

Determine $A(t)$ and $B(t)$.
Hint: Determine an expression for $e(t)$, then $w(t)$, then $y(t)$

\qquad
\qquad
4) (20 points) Consider a linear time invariant system with impulse response given by

$$
h(t)=t[u(\mathrm{t}+1)-u(t-3)]
$$

The input to the system is

$$
x(t)=e^{-t}[u(t)-u(t-2)]
$$

Using graphical evaluation, determine the output $y(t)$ Specifically, you must

- Flip and slide $h(t)$, $\underline{\text { NOT }} x(t)$
- Show graphs displaying both $h(t-\lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute $y(t)$. Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t-\lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!
\qquad
\qquad

5) (26 Points) An LTI system has input, impulse response, and output as shown below.

Determine numerical values for the parameters $a-l$. Note that parameters a - g correspond to times, and $h-l$ correspond to amplitudes.

Hints:

- Note that the output is not drawn to scale, it just represents the general shape of the output.
- A good way to check your answer is to flip and slide one of them, then flip and slide the other one.
- It is probably much easier to get the times correct than the amplitudes.

Name
Mailbox

Name
Mailbox

Name
Mailbox

Name
Mailbox

