ECE-205 Quiz #8

Problems 1 and 2 refer to a system with poles at -2+j. -2-j. -4, -1+2j, -1-2j, and -20

1) The best estimate of the <u>settling time</u> for this system is

a) 4 seconds b) 2 seconds c) 1 second d) 0.2 seconds

2) The <u>dominant pole(s)</u> of this system are

a) -2+j and -2-j b) -1+2j and -1-2j c) -4 d) -20

3) How many terms will there be in the partial fraction expansion of $H(s) = \frac{(s+1)^2}{s^2(s+2)^2}$?

a) 2 b) 3 c) 4 d) 6

4) How many terms will there be in the partial fraction expansion of $H(s) = \frac{s}{(s^2 + 1)(s + 2)}$? a) 0 b) 1 c) 2 d) 3

5) An impulse response h(t) is composed of the terms $1, e^{-t}, te^{-t}$

A possible corresponding transfer function (for some constant value A) is

a)
$$H(s) = \frac{A}{s(s+1)}$$

b) $H(s) = \frac{A}{s^2(s+1)}$
c) $H(s) = \frac{As}{(s+1)}$
d) $H(s) = \frac{A}{s(s+1)^2}$

Problems 6 and 7 refer to the following transfer function

$$H(s) = \frac{2s+1}{(s+2)^2 + 1}$$

6) For this transfer function, the corresponding impulse response h(t) is composed of which terms?

a) $e^{-t} \cos(2t), e^{-t} \sin(2t)$ b) $e^{-2t} \cos(t), e^{-2t} \sin(t)$ c) $e^{-t} \cos(4t), e^{-t} \sin(4t)$ d) $e^{-4t} \cos(t), e^{-4t} \sin(t)$

7) The **poles** of the transfer function are

a) $2 \pm j$ c) $-1 \pm 2j$ b) $-2 \pm j$ d) $-1 \pm 4j$ Problems 8 and 9 refer to the impulse responses of six different systems given below:

$$h_{1}(t) = [t + e^{-t}]u(t)$$

$$h_{2}(t) = e^{-2t}u(t)$$

$$h_{3}(t) = [2 + \sin(t)]u(t)$$

$$h_{4}(t) = [1 - t^{3}e^{-0.1t}]u(t)$$

$$h_{5}(t) = [1 + t + e^{-t}]u(t)$$

$$h_{6}(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

8) The number of **stable systems** is a (0, b) (1, c) (2, d) (3, c) (2, d) (3, c) (2, d) (3, c) (

9) The number of **unstable systems** is a) 0 b) 1 c) 2 d) 3

10) Which of the following transfer functions represents a stable system?

$$\begin{aligned} G_a(s) &= \frac{s-1}{s+1} & G_b(s) = \frac{1}{s(s+1)} & G_c(s) = \frac{s}{s^2 - 1} \\ G_d(s) &= \frac{s+1}{(s+1+j)(s+1-j)} & G_e(s) = \frac{(s-1-j)(s-1+j)}{s} & G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)} \end{aligned}$$

a) all but G_c b) only G_a , G_b , and G_d c) only G_a , G_d , and G_f d) only G_d and G_f e) only G_a and G_d

11) For the transfer function

$$H(s) = \frac{1}{s^2(s+2)}$$

the corresponding impulse response h(t) is composed of which terms?

a) $t^2 e^{-2t}$ b) t and $t e^{-2t}$ c) $1, t, t e^{-2t}$ d) t^2, e^{-2t} e) none of these

12) The Laplace transform of x(t) = u(t) - u(t-2) is

a) $X(s) = 1 - e^{-2s}$ b) $X(s) = 1 - e^{+2s}$ c) $X(s) = \frac{1}{s} - \frac{e^{-2s}}{s}$ d) none of these

13) The Laplace transform of $x(t) = te^{-3t}u(t)$ is a) $X(s) = \frac{1}{s+3}$ b) $X(s) = \frac{1}{s+3}$ c) $X(s) = \frac{1}{(s+3)^2}$

d)
$$X(s) = \frac{2}{(s+3)^2}$$

Problems 14 – 16 refer to the signal flow graph representation of the following block diagram.

- **14)** How many **paths** are there? a) 0 b) 1 c) 2 d) 3 e) 4
- **15)** How man **loops** are there? a) $(0 \ b) (1 \ c) (2 \ d) (3 \ e) (4 \ c) (4 \ c) (2 \ d) (3 \ e) (4 \ c) (4 \ c)$
- **16**) Are any of the **cofactors** equal to 1? a) yes b) no

For problems 17 - 20 consider the signal flow graph representation of the following block diagram.

17) How many **paths** are there? a) 0 b) 1 c) 2 d) 3 e) 4

- **18)** How many **loops** are there? a) 0 b) 1 c) 2 d) 3 e) 4
- **19)** The **determinant** (Δ) is (Δ) 1 b) $1 H_2H_3 H_3H_4$ c) $1 + H_2H_3 + H_3H_4$ d) none of these
- **20)** The transfer function is a) 1 b) $\frac{H_1H_2H_3}{1-H_2H_3-H_3H_4}$ c) $\frac{H_1H_2H_3}{1+H_2H_3+H_3H_4}$

Name

21) For the following system

the pole of the controller $G_c(s)$ is at -15

the poles of the plant $G_p(s)$ are at -1 and -2

the poles of the closed loop system are at -7.1, -5.43 +3.98j, -5.43 -3.98j

The best estimate of the settling time of the closed loop system is

a) 4 seconds b) $\frac{4}{15}$ seconds c) $\frac{4}{7.1}$ seconds d) $\frac{4}{5.43}$ seconds

Problems 22-24 refer to the following feedback system, with the plant $G_p(s) = \frac{4}{s+1}$ and proportional controller, $G_c(s) = k_p$

22) What is the (2%) settling time of the plant ?

a) 1 second b) 2 seconds c) 3 seconds d) 4 seconds e) none of these

23) If we want the settling time to be 4/21 seconds, the value of k_p should be

a) 5 b) 10 c) 21 d) 25 e) none of these

24) If we assume the prefilter is 1 ($G_{pf}(s) = 1$), and we want the steady state error for a unit step to be 1/25, then we should choose the value of k_p to be

a) 3 b) 4 c) 5 d) 6 e) none of these