ECE-205

 Exam 3

 Exam 3
 Fall 2013

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 1 \qquad /20

Problem 2 __ 15
Problem 3 __ 15
Problem 4 __ 15
Problems 5 _ 14
Problems 6-12 \quad _ 21

Total \qquad
\qquad Mailbox \qquad

1) (20 points) For the following transfer functions, determine both

- the impulse response
- the unit step response

Do not forget any necessary unit step functions.
a) $H(s)=\frac{4}{s^{2}+4 s+8}$
b) $H(s)=\frac{s e^{-s}}{(s+1)^{2}}$
\qquad Mailbox \qquad
2) (15 points) Consider the following simple feedback control block diagram. The plant, the thing we want to control, has the transfer function $G_{p}(s)=\frac{3}{s+5}$

a) Determine the settling time of the plant alone (assuming there is no feedback)
b) Determine the steady state error for plant alone assuming the input is a unit step (simplify your answer as much as possible)
c) For a proportional controller, $G_{c}(s)=k_{p}$, determine the closed loop transfer function $G_{0}(s)$
d) Determine the settling time of the closed loop system, in terms of k_{p}
e) Determine the steady state error of the closed loop system for a unit step, in terms of k_{p} (simplify your answer as much as possible)
f) For and integral controller, $G_{c}(s)=\frac{k_{i}}{s}$, determine the closed loop transfer function $G_{0}(s)$ and the steady state error for a unit step in terms of k_{i}
\qquad
3) ($\mathbf{1 5}$ points) For the following circuit

- Determine the ZIR
- Determine the ZSR
- Determine the transfer function
\qquad

4) ($\mathbf{1 5}$ Points) Determine the transfer function for the following circuit.

\qquad
\qquad
5) ($\mathbf{1 5}$ points) Consider a linear time invariant system with impulse response given by

$$
h(t)=e^{-(t+1)} u(t+1)
$$

The input to the system is given by

$$
x(t)=e^{-t}[u(t)-u(t-1)]+2 u(t-2)
$$

Using graphical evaluation, determine the output $y(t)$ Specifically, you must

- Flip and slide $h(t), \underline{\text { NOT }} x(t)$
- Show graphs displaying both $h(t-\lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute $y(t)$. Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t-\lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!
\qquad
\qquad

Problems 6 and 7 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[1+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[t \sin (t)+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

6) The number of (asymptotically) maginally stable systems is a) 0 b) 1 c) 2 d) 3
7) The number of (asymptotically) unstable systems is
a) 0
b) 1 c) 2
d) 3
8) Which of the following transfer functions represents a (asymptotically) stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} \quad G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s} \quad G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but G_{c}
b) only G_{a}, G_{b}, and G_{d}
c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}
\qquad
\qquad

For problems 9-12, consider the signal flow graph representation of the following block diagram.

9) How many paths are there?
a) 0
b) 1 c) 2
d) 3
e) 4
10) How many loops are there?
a) 0
b) 1
c) 2
d) 3 e) 4
11) The determinant (Δ) is
a) 1
b) $1-\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$
c) $1+\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$
d) none of these
12) The transfer function is
a) 1
b) $\frac{H_{3} H_{5}+H_{1} H_{2} H_{3}}{1+H_{2} H_{3} H_{4}}$
c) $\frac{H_{3} H_{5}+H_{1} H_{2} H_{3}}{1-H_{2} H_{3} H_{4}}$

