ECE-205 Practice Quiz 8

(no Tables, Calculators, or Computers)

Problems 1 and 2 refer to the following transfer function $H(s) = \frac{2s+1}{(s+1)^2+4}$

1) For this transfer function, the corresponding impulse response h(t) is composed of which terms?

a) $e^{-t} \cos(2t), e^{-t} \sin(2t)$ b) $e^{-2t} \cos(t), e^{-2t} \sin(t)$ c) $e^{-t} \cos(4t), e^{-t} \sin(4t)$ d) $e^{-4t} \cos(t), e^{-4t} \sin(t)$

2) The poles of the transfer function are

a) $2 \pm j$ b) $-2 \pm j$ c) $-1 \pm 2j$ d) $-1 \pm 4j$

Problems 3 and 4 refer to the impulse responses of six different systems given below:

$$h_{1}(t) = [1 + e^{-t}]u(t)$$

$$h_{2}(t) = e^{-2t}u(t)$$

$$h_{3}(t) = [2 + \sin(t)]u(t)$$

$$h_{4}(t) = [1 - t^{3}e^{-0.1t}]u(t)$$

$$h_{5}(t) = [1 + t + e^{-t}]u(t)$$

$$h_{6}(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

3) The number of (asymptotically) maginally stable systems is a) 0 b) 1 c) 2 d) 3

4) The number of (asymptotically) **unstable systems** is a) 0 b) 1 c) 2 d) 3

5) Which of the following transfer functions represents a (asymptotically) stable system?

$$\begin{aligned} G_a(s) &= \frac{s-1}{s+1} & G_b(s) = \frac{1}{s(s+1)} & G_c(s) = \frac{s}{s^2 - 1} \\ G_d(s) &= \frac{s+1}{(s+1+j)(s+1-j)} & G_e(s) = \frac{(s-1-j)(s-1+j)}{s} & G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)} \end{aligned}$$

a) all but G_c b) only G_a , G_b , and G_d c) only G_a , G_d , and G_f

d) only G_d and G_f e) only G_a and G_d

Problems 6 and 7 refer to the following impulse responses of six different systems

$$h_{1}(t) = [te^{-t}]u(t)$$

$$h_{2}(t) = e^{-2t}u(t)$$

$$h_{3}(t) = [2e^{-2t} + t^{3}\sin(t)]u(t)$$

$$h_{4}(t) = [1 - t^{3}e^{-0.1t}]u(t)$$

$$h_{5}(t) = [1 + t + e^{-t}]u(t)$$

$$h_{6}(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

6) The number of (asymptitcally) <u>unstable</u> systems is	a) 1		b) 2	c) 3	d) 4
7) The number of (asymptotically) <u>marginally stable</u> systems is	a)	1	b) 2	c) 3	d) 4

Problems 8 and 9 refer to a system with poles at -2+5j. -2-5j. -10+j, -10-j, and -20

8) The best estimate of the <u>settling time</u> for this system is

a) 2 seconds b) 0.4 seconds c) 4/5 seconds d) 0.2 seconds

9) The dominant pole(s) of this system are

a) -2+5j and -2-5j b) -10+j and -10-j c) -20

10) Which of the following transfer functions represents a (asymptotically) stable system?

$$\begin{aligned} G_a(s) &= \frac{s-1}{s+1} & G_b(s) = \frac{s}{(s+1)} & G_c(s) = \frac{s}{s^2 - 1} \\ G_d(s) &= \frac{s+1}{(s+1+j)(s+1-j)} & G_e(s) = \frac{(s-1-j)(s-1+j)}{(s+2)^2} & G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)} \end{aligned}$$

a) all but G_c b) only G_a , G_b , and G_d c) only G_a , G_d , and G_f d) only G_d and G_f e) only G_a and G_d

Answers: 1-a, 2-c, 3-d, 4-b, 5-c, 6-b, 7-a, 8-a, 9-a, 10-a