\qquad
\qquad

Quiz 3

1) For the second order equation $\ddot{y}(t)+7 \dot{y}(t)+12 y(t)=6 x(t)$ with an input $x(t)=2 u(t)$, we should look for a solution of the form
a) $y(t)=c_{1} e^{-3 t}+c_{2} e^{-4 t}+6$
b) $y(t)=c_{1} e^{-3 t}+c_{2} e^{-4 t}+12$
c) $y(t)=c_{1} e^{-3 t}+c_{2} e^{-4 t}+1$
d) $y(t)=c_{1} e^{3 t}+c_{2} e^{4 t}+1$
e) $y(t)=c_{1} e^{3 t}+c_{2} e^{4 t}+6$
f) none of these
2) For the second order equation $\ddot{y}(t)+6 \dot{y}(t)+9 y(t)=3 x(t)$ with an input $x(t)=3 u(t)$, we should look for a solution of the form
a) $y(t)=c_{1} e^{-3 t}+c_{2} t e^{-3 t}+1$
b) $y(t)=c_{1} e^{-3 t}+c_{2} e^{-3 t}+9$
c) $y(t)=c_{1} e^{-3 t}+c_{2} t e^{-3 t}+3$
d) $y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}+1$
e) $y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}+3$
f) none of these
3) For the second order equation $\ddot{y}(t)+4 \dot{y}(t)+13 y(t)=26 x(t)$ with an input $x(t)=u(t)$, we should look for a solution of the form
a) $y(t)=c e^{-2 t} \sin (3 t+\theta)+1$
b) $y(t)=c e^{-2 t} \sin (3 t+\theta)+13$
c) $y(t)=c e^{-3 t} \sin (2 t+\theta)+2$
d) $y(t)=c e^{-2 t} \sin (3 t+\theta)+0.5$
e) $y(t)=c e^{2 t} \sin (3 t+\theta)+13$
f) none of these
4) Assume we have a solution of the form $y(t)=c_{1}+c_{2} e^{-3 t}+4$ and the initial conditions $y(0)=\dot{y}(0)=0$. The equations we need to solve are:
a) $c_{1}+c_{2}=4,2 c_{2}=0$
b) $c_{1}+c_{2}=-4,-3 c_{2}=0$
c) $c_{1}+c_{2}=-4, c_{1}-2 c_{2}=0$
d) $c_{1}+c_{2}=-4, c_{1}+3 c_{2}=-4$
e) $c_{1}+c_{2}=0, c_{1}+3 c_{2}=-4$
f) none of these
\qquad
\qquad
5) Assume we have a solution of the form $y(t)=c_{1} e^{-2 t}+c_{2} t e^{-2 t}+2$ and the initial conditions $y(0)=\dot{y}(0)=0$. The equations we need to solve are:
a) $c_{1}+2=0,-2 c_{1}+c_{2}=0$
b) $c_{1}+2=0,2 c_{1}+2 c_{2}=0$
c) $c_{1}+c_{2}=-2,-2 c_{1}+-2 c_{2}=0$
d) $c_{1}+c_{2}=-2,-2 c_{1}+2 c_{2}=0$
e) $c_{1}=2,2 c_{1}+2 c_{2}=0$
f) none of these
6) Assume we have a solution of the form $y(t)=c e^{-t} \sin (2 t+\theta)-4$ and the initial conditions $y(0)=\dot{y}(0)=0$. The equations we need to solve are:
a) $c \sin (\theta)=-4, \tan (\theta)=\frac{3}{2}$
b) $c \sin (\theta)=-4, \tan (\theta)=\frac{1}{2}$
c) $c \sin (\theta)=4, \tan (\theta)=\frac{1}{-2}$
d) $c \sin (\theta)=4, \tan (\theta)=2$
e) $c \sin (\theta)=4, \tan (\theta)=\frac{1}{2}$
f) none of these

Problems 7-10 assume we have a system described by a standard for of a second order system, $\ddot{y}(t)+2 \zeta \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=K \omega_{n}^{2} x(t)$, and the input to the system is a unit step. Assume the system is under damped.
7) The percent overshoot for the system is a function of
a) ζ only
b) ω_{n} only
c) K only
d) ζ and ω_{n}
e) ζ, ω_{n}, and K
8) The settling time for the system is a function of
a) ζ only
b) ω_{n} only
c) K only
d) ζ and ω_{n}
e) ζ, ω_{n}, and K
9) The static gain for the system is a function of
a) ζ only
b) ω_{n} only
c) K only
d) ζ and ω_{n}
e) ζ, ω_{n}, and K
10) The damped frequency for the system is a function of
a) ζ only
b) ω_{n} only
c) K only
d) ζ and ω_{n}
e) ζ, ω_{n}, and K
\qquad
\qquad
11) The following figure shows the step response of three systems. The only difference between the systems is the damping ratio, ζ.

For which system is the damping ratio the smallest? a) $y_{a}(t)$ b) $y_{b}(t) \quad$ c) $y_{c}(t)$

\qquad Mailbox \qquad
12) The following figure shows the step response of three systems. The only difference between the systems is the natural frequency, ω_{n}.

For which system is the natural frequency the largest? a) $y_{a}(t)$ b) $y_{b}(t) \quad$ c) $y_{c}(t)$

\qquad
\qquad

Problems 13 and 14 refer the following graph showing the response of a second order system to a step input.

13) The percent overshoot for this system is best estimated as
a) 200%
b) 150%
c) 100%
d) 67%
e) 50%
f) 33%
14) The static gain for this system is best estimated as
a) 0.1
b) 0.5
c) 1.0
d) 1.2
e) 1.5
f) 2.0
\qquad Mailbox \qquad

Problems 15 and 16 refer the following graph showing the response of a second order system to a step input.

15) The percent overshoot for this system is best estimated as
a) 200%
b) -200%
c) 100%
d) -100%
e) 50%
f) -50%
16) The static gain for this system is best estimated as
a) 3
b) -3
c) 2
d) -2

