ECE-205 Quiz 1

1) For a first order RC circuit, the time constant is of the form

a) $\tau = C / R_{th}$ b) $\tau = R_{th} / C$ c) $\tau = R_{th} C$ d) none of these

2) For a first order RL circuit, the time constant is of the form

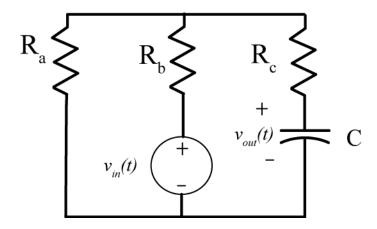
a) $\tau = R_{th}L$ b) $\tau = L/R_{th}$ c) $\tau = R_{th}/L$ d) none of these

3) The differential equation that relates the current through a capacitor to the voltage across a capacitor is

a)
$$v_{c}(t) = C \frac{di_{c}(t)}{dt}$$
 b) $i_{c}(t) = \frac{1}{C} \frac{dv_{c}(t)}{dt}$ c) $i_{c}(t) = C \frac{dv_{c}(t)}{dt}$ d) $v_{c}(t) = \frac{1}{C} \frac{di_{c}(t)}{dt}$

4) The differential equation that relates the current though an inductor to the voltage across an inductor is

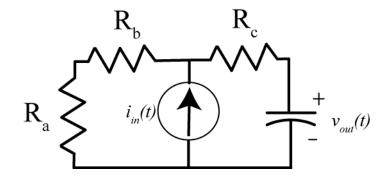
a)
$$i_{L}(t) = L \frac{dv_{L}(t)}{dt}$$
 b) $v_{L}(t) = \frac{1}{L} \frac{di_{L}(t)}{dt}$ c) $i_{L}(t) = \frac{1}{L} \frac{dv_{L}(t)}{dt}$ d) $v_{L}(t) = L \frac{di_{L}(t)}{dt}$


5) The standard form for an RC or RL first order circuit, with input x(t) and output y(t), is

a)
$$\frac{dy(t)}{dt} + \tau \ y(t) = Kx(t)$$
 b) $\frac{dy(t)}{dt} + \tau \ y(t) = Kx(t)$ c) $\frac{1}{\tau} \frac{dy(t)}{dt} + y(t) = Kx(t)$
d) $\frac{dy(t)}{dt} + \tau \ y(t) = \frac{1}{K}x(t)$ e) $\tau \frac{dy(t)}{dt} + y(t) = \frac{1}{K}x(t)$ f) $\tau \frac{dy(t)}{dt} + y(t) = Kx(t)$

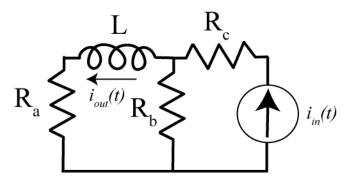
6) A capacitor is a/an a) short circuit b) open circuit to DC signals.

7) An inductor is a/an a) short circuit b) open circuit to DC signals.


Problems 8 and 9 refer to the following circuit:

- 8) The Thevenin resistance seen from the ports of the capacitor is
- a) $R_{th} = R_c + R_a || R_b$ b) $R_{th} = R_c$ c) $R_{th} = R_c || (R_a + R_b)$ d) $R_{th} = R_a + R_b + R_c$ e) none of these
- 9) The static gain for the system is

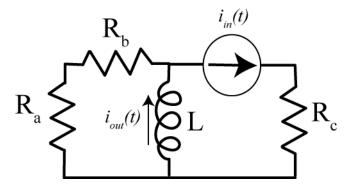
a)
$$K = 1$$
 b) $K = \frac{R_c}{R_a + R_b + R_c}$ c) $K = \frac{R_b}{R_a + R_b}$ d) $K = \frac{R_a}{R_a + R_b}$ e) none of these


Problems 10 and 11 refer to the following circuit

- 10) The Thevenin resistance seen from the ports of the capacitor is
- a) $R_{th} = R_a + R_b$ b) $R_{th} = R_c$ c) $R_{th} = R_c \parallel (R_a + R_b)$ d) $R_{th} = R_a + R_b + R_c$ e) none of these
- 11) The static gain for the system is
- a) K = 1 b) $K = R_c$ c) $K = R_a + R_b$ d) $K = R_c \parallel (R_a + R_b)$ e) none of these

Name _____ Mailbox _____

Problems 12 and 13 refer to the following circuit


12) The Thevenin resistance seen from the ports of the inductor is

a) $R_{th} = R_a + R_b || R_c$ b) $R_{th} = R_c + R_a || R_b$ c) $R_{th} = R_a + R_b$ d) $R_{th} = R_a + R_c$ e) none of these

13) The static gain for the system is

a)
$$K = 1$$
 b) $K = \frac{R_b}{R_a + R_b}$ c) $K = \frac{R_a}{R_a + R_b}$ d) $K = \frac{R_b}{R_c + R_b}$ e) none of these

Problems 14 and 15 refer to the following circuit

14) The Thevenin resistance seen from the ports of the inductor is

a) $R_{th} = R_c \parallel (R_a + R_b)$ b) $R_{th} = R_c$ c) $R_{th} = R_a + R_b$ d) $R_{th} = R_a + R_b + R_c$ e) none of these

15) The static gain for the system is

a)
$$K = 1$$
 b) $K = \frac{R_a + R_b}{R_a + R_b + R_c}$ c) $K = \frac{R_c}{R_a + R_b + R_c}$ d) $K = \frac{R_c}{R_a + R_b}$ e) none of these

16) If
$$z = \frac{1+j}{1-j}$$
, then
a) $\angle z = 0^{\circ}$ b) $\angle z = 90^{\circ}$ c) $\angle z = -90^{\circ}$ d) $\angle z = -45^{\circ}$ e) $\angle z = 45^{\circ}$

17) If
$$z = \frac{1+j}{3+j}$$
, then
a) $|z| = 0$ b) $|z| = \frac{2}{8}$ c) $|z| = \sqrt{\frac{2}{8}}$ d) $|z| = \sqrt{\frac{2}{10}}$