ECE-205 Exam 3 Fall 2011

Calculators and computers are not allowed. You must show your work to receive credit.

- Problem 1 ____/30
- Problem 2 ____/15
- Problem 3 _____/20
- Problem 4 ____/15
- Problems 5 ____/20

Total _____

1) (30 points) For the following transfer functions, determine <u>both</u> the <u>impulse response</u> and the <u>unit step response</u> of the system. Do not forget any necessary unit step functions.

a)
$$H(s) = \frac{e^{-s}}{(s+2)}$$

b) $H(s) = \frac{1}{(s+1)^2}$

c)
$$H(s) = \frac{s}{s^2 + 4s + 5}$$

2) (15 points) Consider the following simple feedback control block diagram. The plant, the thing we want to control, has the transfer function $G_p(s) = \frac{3}{s+5}$

a) Determine the settling time of the plant alone (assuming there is no feedback)

b) Determine the steady state error for plant alone assuming the input is a unit step (simplify your answer)

c) For a proportional controller, $G_c(s) = k_p$, determine the closed loop transfer function $G_0(s)$

d) Determine the settling time of the closed loop system , in terms of k_p

e) Determine the steady state error of the closed loop system for a unit step, in terms of k_p (simplify your answer)

f) For and integral controller, $G_c(s) = \frac{k_i}{s}$, determine the closed loop transfer function $G_0(s)$ and the steady state error for a unit step in terms of k_i

- 3) (20 points) For the following circuit determine
- a) the zero input response (ZIR)
- b) the zero state response (ZSR)
- c) the <u>transfer function</u> H(s)

Note; You will need to include initial conditions for some of this problem.

•

4) (15 points) For the following block diagram

Draw the corresponding signal flow graph, labeling each branch and direction. *Feel free to insert as many branches with a gain of 1 as you think you may need.*

Determine the system transfer function using Mason's gain rule. You must clearly indicate all of the paths, the loops, the determinant and the cofactors. <u>You need to simplify your final answer!</u>

Name _

5) (20 points) Consider a linear time invariant system with impulse response given by

$$h(t) = e^{-t}[u(t) - u(t-3)]$$

The input to the system is given by

$$x(t) = [u(t) - u(t-1)] + [u(t-2) - u(t-4)]$$

The impulse response and input are shown below:

Using *graphical evaluation*, determine the output y(t) Specifically, you must

- Flip and slide h(t), <u>NOT</u> x(t)
- Show graphs displaying both $h(t \lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute y(t). Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t \lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!