ECE-205

Exam 3

Fall 2011

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 1 ___ 30
Problem 2 __ $/ 15$
Problem 3 _ $/ 20$
Problem 4 ___ $/ 15$
Problems $5 \ldots / 20$

Total \qquad

1) (30 points) For the following transfer functions, determine both the impulse response and the unit step response of the system. Do not forget any necessary unit step functions.
a) $H(s)=\frac{e^{-s}}{(s+2)}$
b) $H(s)=\frac{1}{(s+1)^{2}}$
c) $H(s)=\frac{s}{s^{2}+4 s+5}$
2) ($\mathbf{1 5}$ points) Consider the following simple feedback control block diagram. The plant, the thing we want to control, has the transfer function $G_{p}(s)=\frac{3}{s+5}$

a) Determine the settling time of the plant alone (assuming there is no feedback)
b) Determine the steady state error for plant alone assuming the input is a unit step (simplify your answer)
c) For a proportional controller, $G_{c}(s)=k_{p}$, determine the closed loop transfer function $G_{0}(s)$
d) Determine the settling time of the closed loop system, in terms of k_{p}
e) Determine the steady state error of the closed loop system for a unit step, in terms of k_{p} (simplify your answer)
f) For and integral controller, $G_{c}(s)=\frac{k_{i}}{s}$, determine the closed loop transfer function $G_{0}(s)$ and the steady state error for a unit step in terms of k_{i}
3) ($\mathbf{2 0}$ points) For the following circuit determine
a) the zero input response (ZIR)
b) the zero state response (ZSR)
c) the transfer function $H(s)$

Note; You will need to include initial conditions for some of this problem.

4) ($\mathbf{1 5}$ points) For the following block diagram

Draw the corresponding signal flow graph, labeling each branch and direction. Feel free to insert as many branches with a gain of 1 as you think you may need.

Determine the system transfer function using Mason's gain rule. You must clearly indicate all of the paths, the loops, the determinant and the cofactors. You need to simplify your final answer!
\qquad
\qquad
5) (20 points) Consider a linear time invariant system with impulse response given by

$$
h(t)=e^{-t}[u(t)-u(t-3)]
$$

The input to the system is given by

$$
x(t)=[u(t)-u(t-1)]+[u(t-2)-u(t-4)]
$$

The impulse response and input are shown below:

Using graphical evaluation, determine the output $y(t)$ Specifically, you must

- Flip and slide $h(t)$, NOT $x(t)$
- Show graphs displaying both $h(t-\lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute $y(t)$. Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t-\lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!

Name
Mailbox

