\qquad
\qquad

ECE-205 Quiz \#8

Problems 1 and 2 refer to a system with poles at $-2+$ j. $-2-$ j. $-4,-1+2 \mathrm{j},-1-2 \mathrm{j}$, and -20

1) The best estimate of the settling time for this system is
a) 4 seconds
b) 2 seconds
c) 1 second
d) 0.2 seconds
2) The dominant pole(s) of this system are
a) $-2+j$ and $-2-j$
b) $-1+2 j$ and $-1-2 j$
c) -4
d) -20
3) How many terms will there be in the partial fraction expansion of $H(s)=\frac{(s+1)^{2}}{s^{2}(s+2)^{2}}$?
a) 2
b) 3 c) 4
d) 6
4) How many terms will there be in the partial fraction expansion of $H(s)=\frac{s}{\left(s^{2}+1\right)(s+2)}$?
a) 0
b) 1 c) 2
d) 3
5) An impulse response $h(t)$ is composed of the terms $1, e^{-t}, t e^{-t}$

A possible corresponding transfer function (for some constant value A) is
a) $H(s)=\frac{A}{s(s+1)}$
b) $H(s)=\frac{A}{s^{2}(s+1)}$
c) $H(s)=\frac{A s}{(s+1)}$
d) $H(s)=\frac{A}{s(s+1)^{2}}$

Problems 6 and 7 refer to the following transfer function

$$
H(s)=\frac{2 s+1}{(s+2)^{2}+1}
$$

6) For this transfer function, the corresponding impulse response $h(t)$ is composed of which terms?
a) $e^{-t} \cos (2 t), e^{-t} \sin (2 t)$
b) $e^{-2 t} \cos (t), e^{-2 t} \sin (t)$
c) $e^{-t} \cos (4 t), e^{-t} \sin (4 t)$
d) $e^{-4 t} \cos (t), e^{-4 t} \sin (t)$
7) The poles of the transfer function are
a) $2 \pm$ j
b) $-2 \pm j$
c) $-1 \pm 2 \mathrm{j}$
d) $-1 \pm 4 j$
\qquad

Problems 8 and 9 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[t+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

8) The number of stable systems is
a) 0
b) 1 c) 2
d) 3
9) The number of unstable systems is
a) 0
b) 1
c) 2
d) 3
10) Which of the following transfer functions represents a stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} \quad G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s} \quad G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but G_{c}
b) only G_{a}, G_{b}, and G_{d}
c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}
11) For the transfer function

$$
H(s)=\frac{1}{s^{2}(s+2)}
$$

the corresponding impulse response $h(t)$ is composed of which terms?
a) $t^{2} e^{-2 t}$
b) t and $t e^{-2 t}$
c) $1, t, t e^{-2 t}$
d) $t^{2}, e^{-2 t}$
e) none of these
12) The Laplace transform of $x(t)=u(t)-u(t-2)$ is
a) $X(s)=1-e^{-2 s}$
b) $X(s)=1-e^{+2 s}$
c) $X(s)=\frac{1}{s}-\frac{e^{-2 s}}{s}$
d) none of these
13) The Laplace transform of $x(t)=t e^{-3 t} u(t)$ is
a) $X(s)=\frac{1}{s} \frac{1}{s+3}$
b) $X(s)=\frac{1}{s+3}$
c) $X(s)=\frac{1}{(s+3)^{2}}$
d) $X(s)=\frac{2}{(s+3)^{2}}$

