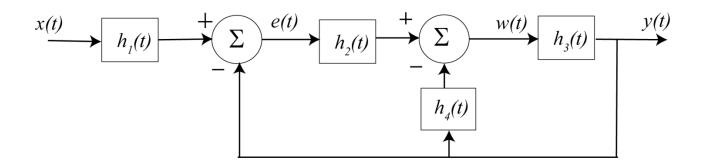
ECE-205 Exam 2 **Fall 2010**

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 1 _____/15

Problem 2 _____/20

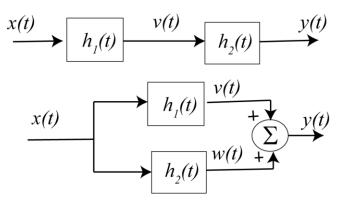
Problem 3 ____/35


Problems 4-13 ____/30 (3 points each)

Total _____

1) (15 points) The input-output relationship for the following system can be written as

$$y(t) * A(t) = x(t) * B(t)$$

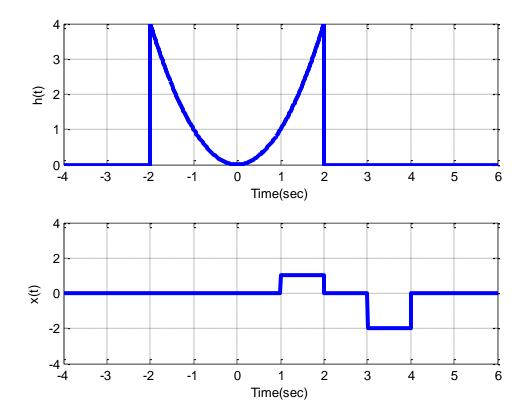

Determine A(t) and B(t)

2) (20 points) For the following interconnected systems,

i) determine the overall impulse response (the impulse response between input x(t) and output y(t)) and

ii) determine if the system is causal.

a)
$$h_1(t) = \delta(t-2), h_2(t) = \delta(t+1)$$


b) $h_1(t) = e^{-(t-2)}u(t-2), h_2(t) = u(t)$

3) (35 points) Consider a linear time invariant system with impulse response given by

$$h(t) = t^{2}[u(t+2) - u(t-2)]$$

The input to the system is given by

$$x(t) = [u(t-1) - u(t-2)] - 2[u(t-3) - u(t-4)]$$

Using *graphical evaluation*, determine the output y(t) Specifically, you must

- Flip and slide h(t), <u>NOT</u> x(t)
- Show graphs displaying both $h(t \lambda)$ and $x(\lambda)$ for each region of interest
- Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute y(t). Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t \lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS !!

Multiple Choice Problems (30 points, 3 points each)

4) The impulse response for the LTI system $y(t) = 2x(t) + \int_{-\infty}^{t-2} e^{-(t-\lambda)} x(\lambda+2) d\lambda$ is

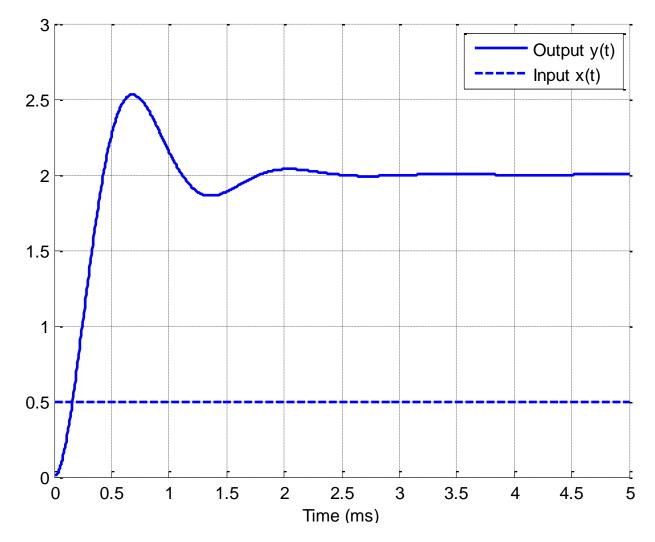
a) $h(t) = 2u(t) + e^{-(t+2)}u(t+1)$ b) $h(t) = 2\delta(t) + e^{-(t+2)}u(t+1)$

c) $h(t) = 2\delta(t) + e^{-(t+2)}u(t)$ d) $h(t) = 2\delta(t) + e^{-(t+2)}u(t-2)$

e) $h(t) = 2\delta(t) + e^{-(t+2)}u(t+2)$ f) none of these

5) The **impulse response** for the LTI system $\dot{y}(t) - y(t) = x(t-1)$ is

a) $h(t) = e^{t}u(t)$ b) $h(t) = e^{-t}u(t)$ c) $h(t) = e^{-(t-1)}u(t)$


d) $h(t) = e^{-(t-1)}u(t-1)$ e) $h(t) = e^{(t-1)}u(t-1)$ f) none of these

6) For a system with input x(t) and output y(t), is it necessary for $y(t_0) = 0$ in order for the system to be **linear**?

a) Yes b) No

7) For a system with input x(t) and output y(t), is it necessary for $y(t_0) = 0$ in order for the system to be time-invariant?

a) Yes b) No

Problems 8-11 refer the following graph showing the response of a second order system to a step input.

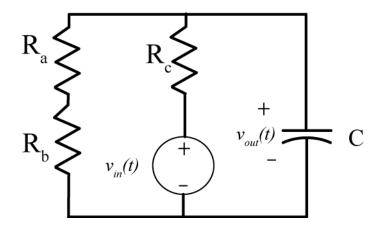
8) The percent overshoot for this system is best estimated as

a) 400% b) 250 % c) 200% d) 150 % e) 100 % f) 25%

9) The (2%) settling time for this system is best estimated as

a) 1.5 ms b) 2.5 ms c) 4 ms d) 5 ms

10) The static gain for this system is best estimated as


a) 1 b) 2 c) 3 d) 4

11) Assume we have a first order system in standard form, and the input is a step. The usual form used to compute the response of the system is

a) $y(t) = [y(0) - y(\infty)]e^{-t/\tau} + y(0)$ b) $y(t) = [y(\infty) - y(0)]e^{-t/\tau} + y(0)$

c) $y(t) = [y(\infty) - y(0)]e^{-t/\tau} + y(\infty)$ d) $y(t) = [y(0) - y(\infty)]e^{-t/\tau} + y(\infty)$

Problems 12 and 13 refer to the following circuit:

12) The Thevenin resistance seen from the ports of the capacitor is

a) $R_{th} = R_a + R_b$ b) $R_{th} = R_c$ c) $R_{th} = R_c || (R_a + R_b)$ d) $R_{th} = R_a + R_b + R_c$ e) none of these

13) The static gain for the system is

a)
$$K = 1$$
 b) $K = \frac{R_c}{R_a + R_b + R_c}$ c) $K = \frac{R_a + R_b}{R_a + R_b + R_c}$ d) $K = \frac{R_c}{R_a + R_b}$ e) none of these