	Guidelines for Creating Design Project Reports
	[image: image1.emf]Produced in cooperation with

®

www.digilentinc.com

	Prepared for Washington State University
	

	Revision: November 26, 2007
	

Guidelines for Writing Design Project Reports
Page 11 / 11

Overview

Before a design project can be considered complete, a Design Project Report (DPR) must be prepared. A DPR is written by and for technical personnel, and it must contain enough technical information to allow a fellow engineer to independently recreate the design. It is one of the essential deliverables for any design project, almost equal in importance to the design itself. A DPR serves several needs: it provides fellow engineers a convenient means to understand, evaluate and/or reuse work; it allows marketing/business personnel to extract project details that they may need; it allows engineers to recall their work months or years later; and it provides a means for engineers to disseminate their work.

A typical DPR includes a description of the design objectives, technical descriptions of all major design blocks, a statement of the final success and/or utility of the design, a list of all hardware and software tools required to complete the design, locations of all source files, and references to external sources (like data sheets, specifications, or other DPRs) where pertinent information can be found. A DPR should present relevant design information in a clear and concise manner, without any narrative discussions or stories about how the design proceeded (other documents, like laboratory notebooks, can be used to capture lessons learned during the design, or other relevant thoughts that might be of general use). Component data sheets from semiconductor manufacturers provide good examples.

This document provides guidelines that can be helpful in preparing a suitable DPR for most design projects, but it cannot address all possible design environments. Different reports will require different amounts of detail, and perhaps even different content and organization altogether. Some DPRs may be a few pages long, and some may require dozens of pages. Every report must be tailored to the design at hand, but in general, these guidelines can serve as a starting point for most situations.

General Requirements

The figure below provides an elaborated outline of the sections that should generally be present in a DPR. In general, the major headings should be included in the document, and second level headings should be included if any one section grows beyond one or two pages. All headings should be distinguished by some combination of vertical white space, bold type, larger type, underlining, italic text, or differential indentation. A table of contents is generally not required unless the document is longer than 15 to 20 pages, and a list of figures is not required at all. Guidelines for font, point size, margins, line spacing, paragraph appearance, headers, footers, common graphics, and other formatting issues are not covered here.

A DPR should start with a title block, or even a title page for larger reports. The sections below provide more information about each section in the document. An example DPR is included as an appendix to this document.

[image: image1.emf]
Title block (or title page)

All DPRs should have a title block that occupies about half of the first page. Larger designs or reports (e.g., those that run 15-20 pages or longer) can use a title page. The title block/page should include: the project name; project context (i.e., project or class the design is associated with); the design engineer’s name and affiliation (i.e., company or university name); submission date; project supervisor (or instructor); and the reason the document was prepared (where applicable).

Project names should be descriptive, but not too wordy. Generally, project names are just a few words, up to maybe a short sentence. The project name should use a larger point size than the document text, and be distinguished with bold face, underlining, or other means. If a team of engineers was involved in the design, they should all be listed along their credentials (e.g., “Electrical Engineer”, “Computer Science”, “Electrical Engineer (student)”, etc).

Introduction

The introduction should generally be limited to one or two pages for larger designs, and one or two paragraphs for smaller designs. It should present the overall design requirements or specifications, the design context, the major features, and the design status. For larger designs, consider including a “features in brief” section to further orient the reader. A features-in-brief section might be a table or list that provides further details about the major features or circuit components in the design, with the same information density as might be found on a typical product advertisement or retail box. Also consider including a “major component” list that identifies any circuit components that might be usable in some other context.

Keep in mind that DPRs are often used by engineers looking for reusable design content in previously completed design projects. The introduction should help such readers determine whether it might be profitable for them to read further into the document. It is not inappropriate to adopt a “sales” feel for the introduction, in order to encourage readers to look more closely at your work. Well-conceived designs and well-written documents can help establish engineers as invaluable “go to” resources in their workplaces.

Background

The intent of this section is to provide all pre-existing information that might be considered important to this design. In some cases, this section might contain theoretical background material that is outside the anticipated experience of the general reader. For example, if the design is to control the deflection of a cathode ray in a display system, some background on field strengths, inductor currents, phosphor illumination energies, etc., might be appropriate. This section can also contain references to other designs, products, or components that the current design must interface with.

In commercial endeavors, it is often of interest why a given design is being built instead of purchased (typically known as the “make-versus-buy” decision). The background section is an appropriate place to state the data that was used to make the build decision.

Design

The design section is the most important part of the DPR. Always bear in mind that it is not possible to prepare a good design write-up without first completing a good design. Several engineering formalisms are essential to creating a good design and a good DPR, including: a well-conceived top-level block diagram that clearly shows an appropriate functional design partition; complete state diagrams to show the exact behavior of all sequential circuits; and timing diagrams to document all signal dependencies. These formalisms should be prepared as a part of the design process, and they can carry much of the weight of the Design section of the DPR.

For larger designs, the design section itself should have an introductory subsection that provides context information for the bulk of the material presented. Smaller designs can simply use an opening paragraph to convey the same information.

Design introduction

The design section should start by reiterating the design intent if it has not already been made sufficiently clear, and by listing all specifications and requirements relevant to the design. For larger designs, specifications are best presented in tabular form, with the specified item in one column, and the specific requirement(s) in an adjacent column. Smaller designs can simply list the performance requirements in a sentence or two.

Block diagrams are a required part of every design document. For simple designs, only a single block is needed. For more complex designs, the block diagram should show the partition used to implement the circuit, and circuit blocks should map to individual source files whenever possible. Circuit blocks should show “macro” functions like controllers, decoders, data path circuits, etc., but generally not simpler components like flip-flops, registers, adders, etc. Circuit blocks and all signals should be clearly identified, particularly those signals that interface with sequential controller blocks. A properly prepared block diagram can serve as a table of contents for the Design section, by showing all circuit blocks for which further explanations will be provided. Brief written explanations should be prepared for every block in the diagram. If you are unclear about any aspect of the design, it will become very apparent in the block diagram. Never include “filler” blocks that you do not clearly understand – they are very easy to spot, and most readers (and graders) will simply stop reading when they spot such obvious shortcomings. If you are use a schematic entry tool for the top-level circuit, then the top-level schematic can be used as the block diagram, provided it is neat, readable, and well commented.

Any design with more than a few I/O signals should show all the signals in a separate table. The table should include the signal name, the signal mode (input, output, or bi-directional), a brief description of signal purpose, logic equations for simple combinational outputs, de-bouncing and/or synchronizing requirements for all inputs, output signal timing requirements where appropriate, any special current drive requirements, and any other pertinent signal requirements or features. Also, note any particular system-level timing dependencies for inputs. For example, if an input needs to be at least 250ns long to start a state machine, but less than 3us to avoid multiple back-to-back starts, then state that requirement. Or if an input must arrive before a given clock edge by some amount, then state that as well (or better yet, show it in a timing diagram). For more complex designs, important internal signals can also be shown and described in a similar table.

The opening subsection can also discuss the general design methods (e.g., behavioral VHDL, schematic capture, etc.) and verification methods that were used for the project. For example, circuit blocks may have been verified independently, or the circuit might have been assembled and then tested as a whole. Also indicate whether simulation or physical implementation and test were the primary verification methods, and discuss the extent and robustness of verification activities.

Finally, list the CAD tools used, together with the tool version and operating system requirements.

Design description(s)

Following the opening section, smaller subsections can be used to describe each major function or block in the overall circuit. Each subsection can be named according to the blocks shown in the overall block diagram (consider reproducing the individual component block diagram in the subsection). Begin each subsection with one or two sentences outlining the circuit block’s function at a high level, and then describe (with appropriate technical detail) the circuit’s function and implementation details. Include any and all useful state diagrams, timing diagrams, block diagrams, and circuit diagrams or schematics (in technical circuit descriptions, a picture is worth 10e9 words). If you attach or include your schematics and/or VHDL code (and you should!), you can reference sections of those source files in the body of your text (e.g., line numbers 15-25 in source file xxx implement this function…). If your source files are well commented (and they should be!), you can refer to comments in the source file to help orient the reader. Be sure to specifically list (perhaps in a separate table) all of the input and output signals for the block. For inputs, state precisely what the input does, and any conditions that are placed on the input (e.g., Input A must be a pulse longer than 5us, Input B must be de-bounced and synchronous… etc.). For outputs, state the function or downstream use of each output, and any special timing (or other) conditions that apply to the output.

The bulk of the material in the design description subsections exists to “walk” the reader through the design source files. If source files are clean, well written, easily to follow, and generously commented, the amount of description required in the DPR can be greatly reduced (you can simply refer to the comments in the source file). Source files should always contain extensive comments that provide insight into circuit behavior. In particular, every source file should contain a comment block that states the file name, the design intent, major architectural features, and lists all I/O signals. Note that modern CAD tools allow comments to be added to schematics as well as HDL source files.

When documenting state machines, you should always show a state diagram. Be sure the state diagram shows all inputs and outputs, and that no undefined or ambiguous branches exist. Define any special timing requirements for input or output signals, and state how the circuit implements those requirements. List any unused state codes, and where appropriate, include an analysis of circuit behavior should the machine enter an undefined state. Consider preparing an outline-style list to describes exactly what happens in each state in the diagram (i.e., describe the inputs, outputs, and system behaviors for each state). Make sure the state diagram exactly matches the circuit’s behavior.

Be sure to draw attention to any programmable or user/designer modifiable features. For instance, if a your design has been created to run at 10Khz, but it is likely that the same design might be re-usable if it could run faster, then state how that might easily be accomplished (e.g., the main counter-divider ratio can easily be changed to modify the controller's frequency…). Or, if your design can be controlled through a programmable interface, specifically list all points of programmability, any default values, all applicable programming options, and what each programming option does (e.g., writing a "100" to the second register will select the RED LED's as the output…).

The DPR should provide evidence that clearly demonstrates the design performs the intended function. Simulator outputs, oscilloscope traces, and logic analyzer timing diagrams are all suitable for this purpose, whether they are for the entire circuit or individual blocks. Whenever output timing diagrams are included, clearly identify what the reader can learn from them (e.g., “as can be seen from the oscilloscope trace, the output “C” occurs one full clock ahead of output “D”, and no timing defects are evident” or “although the simulation waveform shows a possible glitch on the CEN output, no filtering on CEN is required – it is assumed that CEN will drive synchronous circuits using the same master clock”). Output traces, whether from a simulator or test equipment, should be directly annotated with a pencil or by adding comments to the waveform file; otherwise, they can be very difficult to follow. When discussing circuit outputs, be sure to describe the input conditions that created them (and/or refer to the stimulus file), and point out any timing issues that may be of interest to “downstream” circuits.

During design verification, or during the preparation of design documentation, simulators and/or physical verification equipment should be used to test special cases for any inputs or outputs that have special or strict requirements. For example, if certain inputs and outputs must have particular timing relationships, such timing should be verified and documented.

If you refer to other source documents for the provision of technical information, then list proper references to those documents in each subsection. But be sure that the combination of the information provided in this document and in the referred documents paint a clear picture of the design.

Where possible, include information in each subsection that details interesting or useful design metrics. For example, information on power consumption, operating speed, number of components (or logic elements for FPGA designs), etc., would allow other engineers to consider reusing certain parts of your design. If this information is not included in individual subsections, it should be included in the Discussion section (below), or at the start of the Design section.

Discussion

The discussion section is the “free form” part of the DPR. Significant problems encountered along the way should be discussed, together with their eventual solutions (or lack thereof). It is important to point out any alternative solutions that were examined and rejected along the way, so that others following in your footsteps don’t expend needless effort. It is also important to apply hindsight to your design, and to document your views so that others can benefit from the lessons you learned during the project. For example, if one alternative design path was chosen for implementation, but it became clear later on that a better solution was possible, this should be clearly stated with adequate explanation.

If the project/design is not complete, or the design did not meet the original requirements, state clearly what is incomplete or incorrect, why it is not finished, and what resources will be required to get it finished. If the project is only a single phase in a multiphase project, then state that in this section, and sketch (in one or two sentences) just what the follow-on project entails (e.g., this project represents only the display controller portion of the I/O system… it will be included as a module in the I/O system at a later date…).

Finally, provide a detailed account of the engineering resources that were used during the course of the design. At a minimum, define the number of engineering hours required, along with the computing, CAD too, and test and measurement equipment resources/hours that were required.

Conclusion

This section can be used in academic settings to describe any particular circumstances or experiences that might have bearing on the evaluation and grading process.

References

This is a very important and often left-out section. This section simply provides references for any source files or other materials not wholly contained in this document. At a minimum:

· Include a complete list of the locations and/or file names of all electronic source files used in the design. You may want to make complete back-ups, and file them along with the paper documents (but don’t – at least, I don’t want them).

· Include a list all electronic design tools used, the computer platforms on which they were used, and their revision levels.

· Include a list of all persons who contributed to the design, and just what their contributions were.

· Attach copies (as appendices perhaps) of all schematics (not including library parts -- only the stuff that you designed), VHDL code, simulator input files, and where appropriate, simulator outputs.

· Include references to any data sheets or other source documents used in the project.
Presentation

The project presentation is the time to showoff the design and impress the judges. A PowerPoint presentation combined with a project demonstration is a good way to approach the presentation. The presentation needs to have the right balance between presentation flare and technical specifications. TIP: The Project Report is the place for technical detail, whereas the presentation needs only to highlight technical areas, but be prepared to discuss in more detail technical areas if asked by the judges.

The presentation should information from each of the areas of the Project Report’s outline, including an Introduction, Background, Design, Discussion, and Conclusion sections, followed by a demonstration. TIP: Be creative, include pictures, anecdotes, real world applications.

Finally, be honest in the evaluation of the project, including expectations, how the design developed, issues faced, what could have been done better, and what went well and what didn’t go well.

Sample Slide Titles: Title page, Overview, why I chose this design, required hardware, code/logic required, description of design, discussion of issues faced, results, demonstration.
[image: image2.wmf]CLK16M

START

R/N_W

CS_N

OE_N

WE_N

DONE

Design of a Static Ram Controller

By Stew Dent

Submitted for Writing In Major credit in EE324

March 8, 2004

Instructor: Snr. N. Ginear
Washington State University

Introduction

This report presents the design of a circuit to control a Cypress CY62128 SRAM. The circuit is part of a larger design that stores data obtained from an A/D converter in a SRAM array, and then retrieves the data for signal processing applications at a later time. The circuit operates via a handshake interface, starting a read or write cycle when a “start” signal is received, and generating a “done” signal when the cycle is complete. The design is complete, meets all requirements, and it has been verified through simulation and physical implementation.

The circuit is defined in VHDL, and it targets a Xilinx Spartan-2 FPGA. Since all source files are VHDL, they can be generally used in any design that requires an SRAM controller. The Cypress SRAM is a fast asynchronous RAM that follows the timing conventions of most commercially available SRAM, so the circuit should be applicable to the control of asynchronous SRAM from any vendor. The circuit was designed on a Windows 2000 PC using the Xilinx WebPack 5.2 CAD tool.

Background

The SRAM controller is a relatively straightforward design, so no effort was made to find preexisting circuits. Although the design was created specifically for the Cypress CY62128 SRAM, the design is applicable to virtually any asynchronous SRAM. See the Cypress data sheet (reference here) for general SRAM timing and control information.

The design uses a simple sequence generator to create proper sequences of address and data control signals, as well as the strobes needed to drive the RAM. Once sequence is generated for a read request, and a second similar sequence is generated for a write request.

Design

[image: image3.wmf]01

RESET

11

00

START

CS_N

CS_N

OE_N if R/W_N

WE_N if R/W_N

START

[image: image4.wmf]CLK16M

START

CS_N

OE_N

WE_N

DONE

R/N_W

T

clk2s

T

s2clk

T

clk2ad

T

clk

DATA

This SRAM controller has been designed specifically to control a Cypress CY62128 SRAM using a Xilinx FPGA-based circuit. The circuit specifications are shown in the table to the right. With minor modifications, this controller will work with any standard SRAM of any size. The SRAM controller accepts a CLK signal, a read/write input and a START pulse, and then generates the memory control strobes CS, OE (for a read) and WE (for a write) on the next two successive CLK's after START is asserted. The controller also generates a done signal that signifies the end of the memory cycle. Once started, the controller will generate the memory control strobes during the next two clock periods according to the timing diagram below. The memory controller does not generate or latch the memory address or data signals – these signals must be generated independently, and they must remain stable from the time START is presented until after DONE is asserted. Only after DONE has been asserted and de-asserted may the address and data signals change. A table providing input and output information is provided below. The circuit was implemented in VHDL. Source code is attached in appendix 1.

	Signal
	Mode
	Description

	START
	Synchronous input
	Starts memory strobe generation cycle

	R/W_N
	Asynchronous input
	High for read, low for write

	CLK16M
	Clock input
	Main clock input

	RSTD
	Asynchronous master reset
	Master reset

	CS_N
	Output
	Chip select memory strobe

	WE_N
	Output
	Write enable memory strobe

	OE_N
	Output
	Output enable memory strobe

	DONE
	Output
	Done flag

The timing diagram below shows the behavior of the SRAM controller over time. In the diagram, all the marked times (Ts2clk, Tclk2s, Tclk2ad, and Tclk) must be greater than 10ns to ensure proper operation.

The state diagram on the right shows the sequential behavior of the SRAM controller. The machine is immediately and asynchronously reset to the 00 state whenever RESET pulses high.

The machine waits in the 00 state for START to be asserted. As soon as START is asserted, a transition to the 01 state occurs and the CS strobe is asserted. After a single clock period, the machine transitions to the 11 state where it continues to assert the CS strobe, and then conditionally asserts WE or OE depending on whether a write or read cycle has been requested.

CS is asserted in two consecutive states because the SRAM must have a CS strobe that is at least 70ns long. If the machine is run with a clock faster than about 14.28MHz, more than one clock period is required to ensure the CS strobe is long enough.

The design was verified in simulation and in physical tests. Simulation inputs and outputs, and oscilloscope traces are attached in appendices 2, 3, and 4.

Discussion

This was a simple design and no problems were encountered; it can be reused without change.

The design requires two D-flip-flops and approximately 14 2NAND gates. When implemented in a Xilinx FPGA, two CLB's are required. The number of I/O pins is a function of the data RAM size; one pin is required for each data and address line, and three additional pins for the strobe signals. When implemented in a Spartan XCS10 PC84-3 FPGA, this machine can operate at frequencies up to 110MHz.

The design required about two hours of research, two hours of implementation, one hour of simulation, and one hour of verification. A Digilent FPGA board was used to host and test the design. A windows PC was used for CAD tools during the design, and a Tektronix oscilloscope was used for verification.

References

Design files are located in the following directories:

Schematics:
Bradbury\ccole\labproj\ee434\spring98

Sim files:
"

Docs:

"
"
"
"
\docs

Design tools used include:

Computer/OS:

Pentium class/Win95

Schematic capture:
Xilinx Foundation 1.5

Simulation:

"

Documentation:
Word 7.0, Visio technical 7.0

The Cypress SERAM data sheet is located here:

Cypress URL

Table 1: SRAM controller specifications�
�
Feature�
Specification�
�
Operating frequency�
25MHz�
�
Circuit area�
< 3 logic elements�
�
Memory type�
SRAM�
�
Interface�
Handshake (using start and done signals)�
�

� EMBED Visio.Drawing.6 ���

Figure 1. SRAM controller block diagram

EXAMPLE Design Project Report

� EMBED Visio.Drawing.6 ���

Figure 3. SRAM controller state diagram.

� EMBED Visio.Drawing.6 ���

Figure 2. SRAM controller signal timings.

Figure 1. General Content for a DPR

1. Introduction

	Design objectives or intent (state the problem or motivation behind the design)

Summary of design project (a brief synopsis of the design, with a statement of the effectiveness of design – i.e., was this a good design? Did it meet objectives? Could it be reused? Etc.)

Design status (completed, will be completed by --, could be completed if --, abandoned, etc.)

Context (state where the design is used – in product X, in a class, not currently used anywhere, etc.)

	Implementation (is the circuit intended for particular hardware, or is it generic?)

	Required tools (Computer, OS, and CAD tools required)

2. Background

	Analysis of existing designs (why was a new design required?)

	Assumptions (state any assumptions that constrain the design or limit its scope)

Educative or reference material that might help define design context

Theory behind the design (where appropriate)

3. Design

Detailed specifications for complete design

Design partition description

Block diagram, with brief discussion of each block

Descriptions of all top-level signals

Design methods (CAD tools and methods, test and verification strategies, implementation strategies, completion points (e.g., “design is finished when it works correctly in an FPGA”)

Partition details (repeat for each major partition in the design)

	Objectives (what exactly does this partition do)

Block requirements/specifications, including I/O requirements/assumptions

	Detailed block and/or state diagram	

Timing diagrams or constraints

	Alternatives considered (if applicable)

	Technical description of design

Simulation/verification activities and results, presented for the whole design, or on a partition-by-partition basis (discuss what was simulated or physically verified, and what the results showed)

4. Discussion

	Significant problems encountered during design, and how problems were overcome

	Statement of what (if anything) might be done differently if design reused

Account of engineering resources consumed (engineering hours, equipment, computer, software usage summary)

5. Conclusion

	Any pertinent closing remarks (usually pertinent only to academic designs)

6. References

	Pointers to all source file locations used in design

	Locations of all documents or other sources referenced in the design

	Contains material © Digilent, Inc.
	
	11 pages

_1141420660.vsd

_1218886844.vsd
Produced in cooperation with

®

www.digilentinc.com

_1141420110.vsd

_1141420511.vsd

