ECE 130 HW\#10, Due Tuesday, April 12

1. Implement the canonical expression $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,3,5,6,7)$ using only ONE 74LS151 multiplexer and as many 2 -input NOR gates as you like. Build your circuit using simulation software and verify that it works correctly.

2. Implement a $32: 1$ multiplexer with active-low enable using only ONE 74LS151 multiplexer and any glue logic (AND, OR, NOT, etc.) that you desire. Build your circuit using simulation software. NOTE: you should not try to test this circuit with all 2^{32} inputs!!!

There are 32 different inputs. Since the mux is $8: 1$, the inputs must be grouped into sets of four that are then picked in conjunction with the 3 select lines. Let the $32: 1$ mux select lines be $\{\mathbf{a}, \mathbf{b}$, $\mathbf{c}, \mathbf{d}, \mathbf{e}\}$, where \mathbf{a} is the MSB. If the three MSBs are used as the $8: 1$ mux select lines, this will partition the truth table into sets of four that utilize the two LSBs, \mathbf{d} and \mathbf{e}.

Muxing logic with \mathbf{d} and \mathbf{e} must be combined with the inputs to construct the input value to the 8:1 mux. For example, if $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is 100 (representing the input group $10000-10011$, or $16-$ 19), the input 4 on the $8: 1$ mux should be:

d	e	$8: 1$ in4
0	0	$32: 1$ in16
0	1	$32: 1$ in17
1	0	$32: 1$ in18
1	1	$32: 1$ in 19

This can be accomplished with the following sub-circuit:

Making one sub-circuit for each of the eight inputs leads to the final circuit:

