ECE 130 HW\#6 - Due Thursday, March 25

1. Consider the following truth table where the four-bit number $\mathrm{A}(\mathrm{A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)$ is input and X is output:

$\mathbf{A 3}$	$\mathbf{A 2}$	$\mathbf{A 1}$	$\mathbf{A} \mathbf{0}$	\mathbf{X}
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

a. Convert the truth table into a K-Map.

b. Use the K-Map to develop a minimized slm-of-products equation for the output X.
from red: $\mathrm{X}=\mathrm{A} 3^{*} \mathrm{~A}^{\prime}{ }^{\prime}+\mathrm{A} 2^{\prime} * \mathrm{~A} 1+\mathrm{A} 3^{*} \mathrm{~A} 1^{*} \mathrm{~A} 0^{\prime}+\mathrm{A} 2^{\prime} * \mathrm{~A} 0^{\prime}$
c. Use the K-Map to develop a minimized product-of-sums equation for the output X .
from green: $\mathrm{X}=\left(\mathrm{A} 2^{\prime}+\mathrm{A} 1\right)\left(\mathrm{A} 2^{\prime}+\mathrm{A} 0^{\prime}\right)\left(\mathrm{A} 3+\mathrm{A} 2^{\prime}\right)\left(\mathrm{A} 3+\mathrm{A} 1+\mathrm{A} 0^{\prime}\right)$
d. State the number of inputs used for each of the two equations. Based on these numbers, which equation is more efficient? Why?

SoP: 13 inputs
PoS: 13 inputs. Go with PoS since both expressions have same number of inputs.
e. Implement the more efficient equation using either NAND-NAND or NOR-NOR two level logic. Draw your circuit below. You can use the complemented and uncomplemented forms of all of the variables.

