ECE 130 HW#5 – Due Tuesday, March 23

1. Consider the following truth table where the four-bit number A (A3, A2, A1, A0) is input and the four-bit number X (X3, X2, X1, X0) is output:

A3	A2	A1	A0	X3	X2	X1	X0
0	0	0	0	1	1	1	1
0	0	0	1	1	1	0	0
0	0	1	0	1	0	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	0	1
1	0	1	0	0	0	0	1
1	0	1	1	0	0	0	1
1	1	0	0	0	0	0	0
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0

a. Write down the correct functional representation for each of the four outputs in the canonical sigma notation:

X3 (A3, A2, A1, A0) = Σ (0, 1, 2) X2 (A3, A2, A1, A0) = Σ (0, 1, 3, 4) X1 (A3, A2, A1, A0) = Σ (0, 3, 5, 6, 7) X0 (A3, A2, A1, A0) = Σ (0, 2, 4, 5, 8, 9, 10, 11)

b. Write down the correct functional representation for each of the four outputs in the canonical pi notation:

X3 (A3, A2, A1, A0) = Π (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) X2 (A3, A2, A1, A0) = Π (2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) X1 (A3, A2, A1, A0) = Π (1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15) X0 (A3, A2, A1, A0) = Π (1, 3, 6, 7, 12, 13, 14, 15) c. Expand the canonical sigma notation for X3 into a canonical sum-of-products equation (do not attempt to simplify)

X3 = A3' A2' A1' A0' + A3' A2' A1' A0 + A3' A2' A1 A0'

d. Expand the canonical pi notation for X0 into a canonical product-of-sums equation (do not attempt to simplify)

X0 = (A3+A2+A1'+A0)(A3+A2+A1'+A0')(A3+A2'+A1'+A0)(A3+A2'+A1'+A0)(A3+A2'+A1'+A0')(A3'+A2'+A1+A0')(A3'+A2'+A1+A0')(A3'+A2'+A1'+A0'))(A3'+A2'+A1'+A0')(A3'+A2'+A1'+A0'))(A3'+A2'+A1'+A0')(A3'+A2'+A1'+A0'))(A3'+A2'+A1'+A0'))(A3'+A2'+A1'+A0')(A3'+A2'+A1'+A0'))(A3'+A2'+A1'+A0')(A3'+A2'+A1'+A0'))(A3'+A2'+A1'))(A3'+A2'+A1'))(A3'+A2'+A1'+A0'))(A3'+A2'+A1'))(A

e. Using Boolean algebra, simplify the canonical sum-of-products equation for X3 (from part c) into a sum-of-products equation that has the fewest possible literals and operators. (Note that there may be a more simplified form that is *not* sum-of-products.)

X3 = A3' A2' A1' A0' + A3' A2' A1' A0 + A3' A2' A1 A0'

using T7: (A3' A2' A1' A0' + A3' A2' A1' A0) + A3' A2' A1 A0' using T8: (A3' A2' A1' (A0' + A0)) + A3' A2' A1 A0' using T5: (A3' A2' A1' (1)) + A3' A2' A1 A0' using T1: (A3' A2' A1') + A3' A2' A1 A0' using T7: A3' A2' A1' + A3' A2' A1 A0'

according to k-map:

U				
A1A0\A3A2	00	01	11	10
00	1	0	0	0
01		0	0	0
11	0	0	0	0
10	1	0	0	0

2. Prove Theorem Nine ...

A * (A + B) = A

a. ... using only other theorems (justify each step with the theorem number, *like T1*):

A * (A + B) T8: A*A + A*B T3: A + A*B T1: A*1 + A*B T8: A*(1 + B) T2: A*(1) T1: A

b. ... using only postulates

Α	В	X=A+B	A*X	Α
0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	1	1

According to postulate 1, A/B can only have two values, 1 and 0. Hence, there are 4 possible table entries corresponding to the 4 possible combinations of A and B. Postulates 3, 4, and 5 define the behavior for the + and * operators for the 3^{rd} and 4^{th} column. For every possible case of A and B, the expression $A^*(A+B)$ is equivalent to the value of A. Therefore, by perfect induction, $A = A^*(A+B)$.