ECE 130 HW\#5 - Due Tuesday, March 23

1. Consider the following truth table where the four-bit number $\mathrm{A}(\mathrm{A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)$ is input and the four-bit number $\mathrm{X}(\mathrm{X} 3, \mathrm{X} 2, \mathrm{X} 1, \mathrm{X} 0)$ is output:

$\mathbf{A 3}$	$\mathbf{A 2}$	$\mathbf{A 1}$	$\mathbf{A} \mathbf{0}$	$\mathbf{X 3}$	$\mathbf{X 2}$	$\mathbf{X 1}$	$\mathbf{X 0}$
0	0	0	0	1	1	1	1
0	0	0	1	1	1	0	0
0	0	1	0	1	0	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	0	1
1	0	1	0	0	0	0	1
1	0	1	1	0	0	0	1
1	1	0	0	0	0	0	0
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0

a. Write down the correct functional representation for each of the four outputs in the canonical sigma notation:

$$
\begin{aligned}
& \mathrm{X} 3(\mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=\Sigma(\\
& \mathrm{X} 2(\mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=\Sigma(\\
& \mathrm{X} 1(\mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=\Sigma(\\
& \mathrm{X} 0(\mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=\Sigma(
\end{aligned}
$$

b. Write down the correct functional representation for each of the four outputs in the canonical pi notation:

$$
\begin{aligned}
& \mathrm{X} 3(\mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=\Pi(\\
& \mathrm{X} 2(\mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=\Pi(\\
& \mathrm{X} 1(\mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=\Pi(\\
& \mathrm{X} 0(\mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=\Pi(
\end{aligned}
$$

c. Expand the canonical sigma notation for X 3 into a canonical sum-of-products equation (do not attempt to simplify)
d. Expand the canonical pi notation for X 0 into a canonical product-of-sums equation (do not attempt to simplify)
e. Using Boolean algebra, simplify the canonical sum-of-products equation for X3 (from part c) into a sum-of-products equation that has the fewest possible literals and operators. (Note that there may be a more simplified form that is not sum-of-products.)
2. Prove Theorem Nine ...

$$
A *(A+B)=A
$$

a. ... using only other theorems (justify each step with the theorem number, like T1):
b. ... using only postulates

