# ECE 351 Lab 7 Frequency Response of Networks 

In this lab we will measure the frequency response of the passive networks shown in Figure 1. For capacitors, assume $\pm 20 \%$ tolerance for ceramic and polyester capacitors and $-20 \%,+80 \%$ tolerance for electrolytic capacitors.

## V.A.Pole-Zero Calculations

The calculations for Circuit 1 in Figure 1 are straight forward and will not be discussed. Circuit 2 has high and low frequency poles and is a little more involved. There are two methods for finding the poles of Circuit 2.

## V.A.1.Separation of Poles

In Circuit 2 we note that $C_{1} \gg C_{2}$ so that the poles due to $C_{1}$ and $C_{2}$ may be far apart. We also note that $\mathrm{C}_{1}$ is in series with the signal path and looks like a coupling capacitor. Thus, we shall treat $\mathrm{C}_{1}$ as a coupling capacitor and assume that it rolls off the gain at low frequency. We see that $C_{2}$ is in parallel with $R_{2}$ and rolls off the gain at high frequency. $\mathrm{C}_{2}$ looks like $\mathrm{c}_{\pi}$ in a common-emitter amplifier circuit.

We shall treat $C_{1}$ as a low frequency capacitor and $C_{2}$ as a high frequency capacitor. This is an approximation. When we are finding the pole due to $C_{1}$, we will assume that $C_{2}$ is so small that it is an open circuit. When we are finding the pole due to $\mathrm{C}_{2}$, we shall assume that $\mathrm{C}_{1}$ is so large that it is a short. This is the method we use to find the poles in an amplifier. When we find the poles due to coupling and bias capacitors (low frequency poles) we assume that $c_{\pi}$ and $c_{\mu}$ are open circuits. When we find the poles due to $c_{\pi}$ and $c_{\mu}$ we assume that all coupling and bias capacitors are short circuits.

To find the pole due to $C_{1}$, we assume that $C_{2}$ is an open circuit and obtain the circuit of Figure 2. The pole due to $\mathrm{C}_{1}$ is at

$$
\omega_{1} \cong \frac{1}{C_{1}\left(R_{1}+R_{2}\right)}=500 \mathrm{r} / \mathrm{s}
$$

To find the pole due to $C_{2}$, we assume that $C_{1}$ is a short circuit and obtain the circuit of Figure 3 . The pole due to $\mathrm{C}_{1}$ is at

$$
\omega_{1} \cong \frac{1}{C_{1}\left(R_{1} \| R_{2}\right)}=200,000 \mathrm{r} / \mathrm{s}
$$

## V.A.2.Laplace Transforms

Next we will use Laplace transforms to find the poles and zeros. When using Laplace transforms the impedance of a capacitor is $Z_{C}=1 / \mathrm{sC}$. Thus, the impedances of capacitors C 1 and C 2 are $Z_{C 1}=1 / \mathrm{sC}$, and $Z_{C 2}=1 / s C_{2}$. Let $Z_{x}=Z_{C 2} \| R_{2}$, so

$$
\begin{aligned}
Z_{C 2} & =Z_{C 2} \| R_{2} \\
& =\frac{R_{2}\left(\frac{1}{s C_{2}}\right)}{R_{2}+\left(\frac{1}{s C_{2}}\right)} \\
& =\frac{R_{2}}{1+s C_{2} R_{2}}
\end{aligned}
$$

The voltage gain of Circuit 2 can be calculated from the voltage divider equation,

$$
\frac{v_{o}}{v_{s}}=\frac{Z_{x}}{Z_{x}+Z_{C 1}+R_{1}}
$$

Substituting, we get

$$
\begin{aligned}
\frac{v_{o}}{v_{s}} & =\frac{Z_{x}}{Z_{x}+Z_{C 1}+R_{1}} \\
& =\frac{\left(\frac{R_{2}}{1+s C_{2} R_{2}}\right)}{\left(\frac{R_{2}}{1+s C_{2} R_{2}}\right)+R_{1}+\frac{1}{s C_{1}}} \\
& =\frac{s C_{1} R_{2}}{s C_{1} R_{2}+s C_{1} R_{1}\left(1+s C_{2} R_{2}\right)+\left(1+s C_{2} R_{2}\right)} \\
& =\frac{s C_{1} R_{2}}{s^{2}\left(C_{1} C_{2} R_{1} R_{2}\right)+s\left(C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}\right)+1} \\
& \frac{s / C_{2} R_{1}}{s^{2}+s\left[\frac{C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}}{C_{1} C_{2} R_{1} R_{2}}\right]+\left[\frac{1}{C_{1} C_{2} R_{1} R_{2}}\right]}
\end{aligned}
$$

To find the zeros, we set the numerator to zero and solve for $s$,

$$
\frac{s}{C_{2} R_{1}}=0
$$

Thus, there is one zero at $s_{o}=0$, or $\omega=0$.

To find the poles, we set the denominator to zero and solve for $s$,

$$
s^{2}+s\left[\frac{C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}}{C_{1} C_{2} R_{1} R_{2}}\right]+\left[\frac{1}{C_{1} C_{2} R_{1} R_{2}}\right]=0
$$

This is a quadratic equation in $s$. Solving for $s$ we get,

$$
s=\frac{1}{2}\left[-\left[\frac{C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}}{C_{1} C_{2} R_{1} R_{2}}\right] \pm \sqrt{\left(\left[\frac{C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}}{C_{1} C_{2} R_{1} R_{2}}\right]\right)^{2}-\left[\frac{4}{C_{1} C_{2} R_{1} R_{2}}\right]}\right]
$$

Plugging in the numerical values we get, $s=-498.75 \mathrm{r} / \mathrm{s}$ and $\mathrm{s}=-200,501.25 \mathrm{r} / \mathrm{s}$. These correspond to poles at $\omega=498.75 \mathrm{r} / \mathrm{s}$ and $\omega=200,501.25 \mathrm{r} / \mathrm{s}$. These numerical results agree closely with the approximate answers we found using separation of poles.

## V.B. Pre-Lab Calculations

We will be using the circuits of Figure 1. For these circuits make the following calculations and plots before coming to lab.

1. Obtain the transfer function $\frac{v_{o}}{v_{s}}(j \omega)$ or $\frac{v_{o}}{v_{s}}(s)$ for each circuit. Give the function in terms of the circuit variables (no numbers - use labels such as $R_{1}, R_{2}, C_{1}$, and $C_{2}$ ). Identify the poles and zeros from your transfer function.
2. Plug in circuit component values and obtain numerical values for the maximum and minimum values of the poles and zeros. Record the results in Table 3 and Table 4.
3. Using MATLAB, generate magnitude Bode plots of the two transfer functions. Plot each transfer function on a separate plot. Find the numerical values of the poles and zeros from the Bode plot and record the values in Table 3 and Table 4.
4. Use the PSpice AC analysis to obtain Bode magnitude plots for each circuit. Find the numerical values of the poles and zeros from the Bode plot and record the values in Table 3 and Table 4. Use the cursors to find and label the numerical values of the poles on the plot. (See pages 232 to 240 of the PSpice manual for help.)

## V.C.Laboratory Procedure

Wire Circuit 1 shown in Figure 1.

1. With channel A measure $v_{s}$. With channel B measure $v_{o}$. For each gain measurement, measure both the input and output waveforms because the signal generator's output may change with frequency.
2. Measure $v_{s}$ and $v_{o}$ for several (at least 20) frequencies and fill in Table 1. To make measurements easier, you can use a large input (as large as you want) because this is a linear circuit.
3. Specifically attempt to measure the location of the poles and zeros. Remember that a pole occurs when the gain is down to 0.707 times the original gain and a zero occurs when the gain is up to 1.414 times the original gain. Record the location of the poles and zeros. Find the frequency of the poles and zeros and record the values in Table 3.
4. Using MATLAB, plot the measured data and the theoretical transfer curve in a Bode magnitude plot. Plot the theoretical transfer curve with a solid blue line. Plot the measured data with red x's at each individual measured point. The Matlab code segment below generates a Bode Magnitude plot of the function $\frac{V o}{V i n}=\frac{1000}{1000+j \omega}$ and a plot of the measured data on a single graph.
set(0,'defaultlinelinewidth',3);
set(0,'defaultaxesfontname','Arial');
set(0,'defaultaxesfontsize',14);
set(0,'defaultaxeslinewidth',2)
set(0,'defaulttextfontsize',14);
set(0,'defaulttextfontname','Arial');
omega=logspace(1,4,200);
mag=20*log10(abs(1000./(i*omega+1000)));
measured_Omega=[1, 13,103,523,628, 750,1000, 1250, 1500,10000];
measured_gain=[11 11
measured_mag=20*log10(measured_gain);
semilogx(omega, mag, 'r', measured_Omega, measured_mag, 'b*-');
axis([10,10000,-20 5]);
grid on;
ylabel('Gain(dB)');
xlabel('Frequency (rad/sec)');
title('Bode Magnitude plot of Vo/Vin');


Repeat the above procedure for Circuit 2 in Figure 1. Record the measured data in Table 2 and Table 4.

| Table 1: Measured data for Circuit $\mathbf{1}$ of Figure 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |

Table 2: Measured data for Circuit 2 of Figure 1

| Frequency (Hz) | $\omega(r / s)$ | $\begin{gathered} v_{s} \\ \text { (Can be large.) } \end{gathered}$ | $v_{o}$ | Gain $\left(\frac{v_{o}}{v_{s}}\right)$ | Gain in Decibels $20 \log _{10}\left(\frac{v_{o}}{v_{s}}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |



Circuit 1


Circuit 2

Figure 1: Circuits for Lab V.


Figure 2: Circuit 2 of Figure 1 when $\mathrm{C}_{2}$ is assumed to be an open circuit.


Figure 3: Circuit 2 of Figure 1 when $C_{1}$ is assumed to be a short circuit.

| Table 3: Results Summary for Circuit 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Frequency of Pole |  | Frequency of Zero |  |
|  | Radians per second | Hz | Radians per second | Hz |
| Calculated Maximum |  |  |  |  |
| Calculated Minimum |  |  |  |  |
| Numerical Value from MATLAB |  |  |  |  |
| Numerical Value from PSpice |  |  |  |  |
| Measured Value |  |  |  |  |


| Table 4: Results Summary for Circuit 2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Low Frequency Pole |  | High Frequency Pole |  |
|  | Radians per second | Hz | Radians per second | Hz |
| Calculated Maximum |  |  |  |  |
| Calculated Minimum |  |  |  |  |
| Numerical Value from MATLAB |  |  |  |  |
| Numerical Value from PSpice |  |  |  |  |
| Measured Value |  |  |  |  |

