Homework 4

Problem 1

Find the functionality for the following circuit. Complete a truth table (please include which FETs are on or off), then write the final function in sum-of-products format. (if you cannot figure out the funciton by looking at the circuit, place the truth table in a K-Map. Simplify the K-Map to find the resulting sum-of-products function.)

Problem 2

Develop the CMOS circuit for the following function. Do not simplify the function. Implement it in it's current form. Make sure that your circuit does not produce a short between VDD and GND or a floating output.

$$
X=\overline{(A+B) C D+A B}
$$

Problem 3

The DC characteristic of a 3-input NAND can be found by assuming that $\mathrm{A}=\mathrm{B}=\mathrm{Vdd}$ and C moves from 0 V to Vdd . $\mathrm{Vdd}=5 \mathrm{~V}$ for this problem.
(a) Find VOH (the output voltage for a high) and VOL (the output voltage for a low) for the following three loads assuming that $\mathrm{R}_{\mathrm{ds}}=10 \Omega$.
(i)

(ii)

(iii)

(b) Draw the resulting DC characteristic for each of the 3 loads. Be sure to notate the VOH and VOL levels precisely.

