Homework 1 - ECE Review

Problem 1

Perform the following arithmetic using $\mathbf{6}$ bit 2's complement numbers. Provide the answer in binary and hexadecimal form.

30

- 8

Problem 2

Design a 4-bit arithmetic block that performs the following functions. You may only use muxes, NOR gates, and 4 full adders. Assme all inputs are 4-bit binary numbers in 2's complement form.

$\mathrm{S}_{1} \mathrm{~S}_{0}$	function
0	0
$\mathrm{~A}+\mathrm{B}$	
0	1

Problem 3

Complete the timing diagram for the following circuit. Assume that the flip-flops have a 2 ns delay each and that the XOR gate has a 1 ns delay. Both flip-flops are negative edge triggered. Q0 and Q1 are initially high.Assume there are no set-up or hold violations.

Problem 4

An electronic lock is controlled by a keypad that has three buttons labelled \mathbf{A}, \mathbf{B}, and \mathbf{R}. The keypad is restricted such that, at most, one key can be pressed at a time, and that each keypress generates an input signal that lasts for only one clock cycle. A state machine takes the keypresses as input, and its output is either lock (\mathbf{L}) or unlock (\mathbf{U}). If the correct sequence of keys is typed and followed by an \mathbf{R}, the state machine generates an unlock (\mathbf{U}) signal and then resets. At any other time the output should be locked (\mathbf{L}). If an incorrect sequence of keys is pressed the lock becomes inactive until the reset (\mathbf{R}) key is pressed, at which point the lock resets (with no unlock signal).
(a) Create state diagram for a MOORE machine that will test for the correct key sequence is BBA. Label your inputs A, B, R, and O (for no key pressed). Label your output L or U. Label your states
with words such as "reset" and "inactive," or with partial key sequences such as "BBA." Make sure that all possible transistions exist.
(b) How many flip-flops are necessary to implement this state machine if the outputs are one-hot encoded? Explain your answer.
(c) How many flip-flops are necessary to implement this state machine if the states are binary encoded? Explain your answer.
(d) Show how the state diagram would change for a Meely implementation?
(e) How many flip-flops are necessary to implement the Meely state machine if the states are onehot encoded? Explain your answer.
(f) How many flip-flops are necessary to implement the Meely state machine if the states are binary encoded? Explain your answer.
(g) Under what circumstances would a designer choose the Moore implementation? The Meely implementation?

