

\checkmark	${ }^{\ominus}$ (e) Paste a screenshot of your movie window below:		
\cdots			
I			
\cdots	∇ c. Determination of frequency		
$\stackrel{\rightharpoonup}{\sim}$	${ }^{\ominus}(1)$ Use the video controls to step through the movie. The controls are:		
$=$	- $\mathbf{-} \mid 14\\|4\\|$		
\cdots	Play, Stop, Rewind to beginning, Back one frame, Forward one frame		
\cdots	Warning: the buttons are pretty finicky. If the mouse cursor turns into a hand, Logger Pro thinks you are trying to "grab" the		
\square	bottom edge of the window so you can drag it to another location. The same goes for the left edge of the Play button. To		
\sim	get around this nuisance, try to click on the upper half of the button.		
$\underline{\square}$	${ }^{\ominus}$ (2) The upper right corner of the window displays the time (in seconds) of the current frame. You should notice that it		
$\underline{\square}$	increases by about 0.067 s per frame. (There are 15 captured frames per second.) The very first frame might be somewhat		
\leq	longer than this, so don't use it.		
\pm	${ }^{\ominus}$ (3) As you step through the movie, count how many wavefronts pass by a fixed location in the window (the origin you chose in		
\square	the last part makes for a convenient fixed location.)		
I	Θ (4) Note your starting time, and then determine the time elapsed before 50 waves pass your fixed point. This number is 50		
\sim	times the period of the wave.		
I	${ }^{\ominus}$ (5) Finally, calculate the frequency by taking the reciprocal of the period (or 50 divided by the total time elapsed).		
\cdots	${ }^{\ominus}$ (6) Record your result (in Hz) here:		
5	$f=$		
5	$\nabla \mathrm{d}$. Determination of wave velocity		
$\underline{\square}$	∇ (1) For this part, you will need to use the Add Point feature. When the Add Point button is selected, clicking in the picture does		
\sim	two things:		
\sim	${ }^{\theta}$ (a) it records the x - and y -coordinates (in cm) of the point you selected; and		
I	${ }^{\ominus}$ (b) it automatically advances to the next frame.		
I	${ }^{\ominus}$ (2) The coordinates of the points you select will automatically appear in the graph in the background. You will see two sets of		
\square	points; one is x vs t, the other is y vs t.		
$\underline{\square}$	${ }^{\ominus}(3)$ Use this feature to follow a wavefront frame-by-frame. Just keep clicking on the position of the wavefront in each frame. If		
I	you make a mistake, don't worry about it-just keep going and you can correct it later.		
\cdots	${ }^{\ominus}$ (4) You might find it difficult to tell exactly which wavefront went where in the time between frames. Just remember that the		
\square	wave is moving to the right, and under these conditions the wave should be moving slowly enough that it doesn't travel		
I	more than one wavelength per frame.		
\sim	Ө (5)		
\pm	When you are finished, click on the graph of x and y vs time and perform a linear fit by clicking the $\mathrm{R}=$ button. When		
\sim	asked to pick a column, choose X (if you aligned your axes correctly, the Y data set should be very uninteresting).		
\sim	(6) Logger Pro will calculate the best-fit line to the series of points and tell you the slope. If there are one or more data points at		
\sim	the ends that you don't want in your data set, click and drag the little brackets at the endpoints of the fitting region to		
\cdots	exclude them. If there is a point in the middle that you want to take out, click and drag over a horizontal region in the graph		
$\stackrel{\rightharpoonup}{\sim}$	that includes only that point, and then press Apple-minus (or Strike Through Data Points from the Edit menu) and the point		
\cdots			
$\underline{\square}$	${ }^{\ominus}$ (7) The slope of the graph should tell you the x-velocity of the wavefront, which is the same as the velocity of the water waves.		
\sim	Record that value here (in cm / s):		
\square	$\mathrm{v}=$		
I	${ }^{\ominus}$ (8) Paste a screenshot of your graph here:		
\checkmark			
\cdots			
\sim	${ }^{\text {® }}$ e. Compare the three quantities you measured in this part. Do they obey the equation that you expect to govern their		
\cdots	relationship? If not, how big is the discrepancy?		
\sim			
\square	Ө f. Save your Logger Pro file (Apple-S) before moving on to the next part. Save this file too (Apple-S in NoteBook).		
-	∇ C. Reflection		
\sim	∇ 1. Setup		
	Q a. Turn to page 2 of the Logger Pro file.		
\sim	$\theta_{\text {b. }}$ Insert a metal "wall" into your ripple tank at an anale to the plane wave dipper, as shown in the picture below:		

\pm	wavefront approaches the wall. It is reflected at an angle, but you may also see a few ripples that are parallel to the surface of the wall. It may help to watch the movie several times frame by frame.
\cdots	Ө e. Now rewind back to the time when the wave began and click on Add Point. Using this feature, track the wavefront until it hits
\pm	the wall. Try as hard as you can to place your points in a line perpendicular to the wavefront (and therefore parallel to the
\cdots	direction of motion).
\pm	$\Theta_{\text {f. After the wave hits the wall, it reflects. Use a separate series of data points to track the motion of the reflected wave. Do this by }}$
-	clicking on Set Active Point and choosing Add Point Series. Now when you click it will record the positions in a different color
\cdots	and record it as "X2" and "Y2." You can also use the Set Active Point button to toggle between the two series.
$\xrightarrow{\sim}$	${ }^{\text {® }} \mathbf{g}$. It is not essential that you start tracking the reflected wave from the same point that your initial tracking hit the wall, but it might
\cdots	make it conceptually easier for you-that way, your two trails of points represent an "incident ray" and a "reflected ray."
I	${ }^{\ominus}$ h. Click on the graph and you should see four sets of points: x and y of the incident ray, and x and y of the reflected ray, all
T	versus time. Do a linear fit for all four (the reflected ray data is called "X2" and "Y2") to find the velocity components in the x -
1	and y -directions.
\pm	$\Theta_{\text {i }}$. Record your velocity data here (in cm / s):
\sim	v _xi $=$
I	v_yi $=$
\cdots	v ¢ $\mathrm{xr}=$
\cdots	v_yr =
\cdots	$\Theta_{\text {j }}$. Paste the graph of the four lines here:
\sim	
\sim	V 5. Compare your results to the theoretical predictions:
\cdots	Θ a. Is the speed of the incident wave equal to the speed of the reflected wave?
\square	
\cdots	${ }^{\ominus}$ b. Calculate the angles of incidence and reflection (in degrees):
\sim	$\theta _i=$
\sim	$\theta _r=$
\sim	${ }^{\ominus}$ c. Does the law of reflection hold?
\sim	
\cdots	® 6. Save your Logger Pro file, and this file, before moving on.
\cdots	∇ D. Refraction
I	$\nabla 1$. Setup
I	Q a. Turn to page 3 of the Logger Pro file.
\square	∇ b. Remove the "wall" from your ripple tank and put in the big yellow triangle. The water level should be deep enough to cover the
I	triangle. Turn the triangle so that it is "pointing" at the dipper and one edge is parallel to the direction of motion of the waves,
\cdots	as shown below. Hold onto the triangle until it stops slipping around.
\pm	${ }^{\ominus}(1)$
\sim	
\cdots	
\pm	
\checkmark	
\square	
\sim	
\cdots	
\cdots	
\cdots	
1	
\sim	
\sim	
\sim	
$\stackrel{\rightharpoonup}{\square}$	
1	
\cdots	
1	
\sim	
\pm	
\square	
\cdots	
\sim	${ }^{\ominus}$ c. Turn the ripple tank motor back on by setting the frequency knob back to "C."
\cdots	Θ d. Insert \rightarrow Video Capture. Click the Options button. Keep all of the same settings as previously, except this time:
\sim	Capture Filename Starts With: Refraction
\sim	Click OK.
	Q 2. Start the video capture. Wait for 10 seconds until the movie appears. Close the Video Capture window.
$こ$	3. Notice what happens when the waves reach the edge of the yellow triangle. They appear to bend and move into the triangle at a different angle. This is because of refraction.

| | a. The edge of the triangle is a boundary between two regions of different wave speed--the waves move slower in the yellow |
| :--- | :--- | :--- | :--- |
| region. | |

