ECE250 (KEH) BJT Formula Sheet (For Test 2)

BJT Modes of Operation:
Cutoff $\quad B E$ junction off, $B C$ junction off
Forward Active $B E$ junction on, $B C$ junction off
Reverse Active $B E$ junction off, $B C$ junction on
Saturation $B E$ junction on, $B C$ junction on
For NPN BJT: le referenced flowing OUT of BJT, Ib and Ic both referenced flowing INTO BJT

$$
\mathrm{Vbe}_{\mathrm{ON}}=0.7 \mathrm{~V}, \mathrm{Vce}_{\mathrm{SAT}}=0.1 \mathrm{~V}
$$

For PNP BJT: le referenced flowing INTO BJT, Ib and Ic both referenced flowing OUT OF BJT

$$
\mathrm{Veb}_{\mathrm{ON}}=0.7 \mathrm{~V}, \mathrm{Vec}_{\mathrm{SAT}}=0.1 \mathrm{~V}
$$

For forward active NPN and PNP BJTs:
Ie $=\mathrm{Ib}+$ Ic $\quad \alpha=\frac{\text { Ic }}{\text { Ie }} \quad\left(0<\alpha<1^{\prime}\right) \quad \beta=\frac{\text { Ic }}{\text { Ib }}=\frac{\alpha}{1-\alpha}$
$\mathrm{r}_{\pi}=\frac{\mathrm{n} \cdot \mathrm{V}_{\mathrm{T}}}{\mathrm{Ib}_{\mathrm{Q}}} \quad \mathrm{ro}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{Ic}_{\mathrm{Q}}} \quad \mathrm{g}_{\mathrm{m}}=\frac{\mathrm{i}_{\mathrm{C}}(\mathrm{t})}{\mathrm{v}_{\mathrm{be}}(\mathrm{t})}=\frac{\beta}{\mathrm{r}_{\pi}}$
DC Q Point Stability Design Rules of Thumb: $(1+\beta) R e=10 R_{T H}$ and $V_{R e}=1 \mathrm{~V}$
General Voltage Amplifier AC Model: Avo $=\left(\frac{v_{\text {out }}(t)}{v_{\text {in }}(t)}\right) \quad \underset{R L=\text { infinity }}{R_{\text {in }}=} \begin{array}{r}\mathrm{v}_{\text {in }}(\mathrm{t}) \\ \mathrm{i}_{\text {in }}(\mathrm{t})\end{array} \quad \mathrm{R}_{\text {out }}=\left(\frac{\mathrm{v}_{\text {test }}}{\mathrm{i}_{\text {test }}}\right) \quad \operatorname{vin}(t) \rightarrow 0$

For CE Amplifier: (Note, you must know how to derive these, if asked on the test)

$$
\text { Avo }=\frac{-\beta \cdot \frac{\mathrm{Rc} \cdot \mathrm{ro}}{\mathrm{Rc}+\mathrm{ro}}}{\mathrm{r}_{\pi}+(\beta+1) \cdot \mathrm{Re}_{1}} \quad \mathrm{R}_{\text {in }}=\frac{1}{\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{r}_{\pi}+(\beta+1) \cdot \mathrm{Re}_{1}}} \quad \mathrm{R}_{\text {out }}=\frac{\mathrm{Rc} \cdot \mathrm{ro}}{\mathrm{Rc}+\mathrm{ro}}
$$

DC Load Line: Ic intercept $=(\mathrm{Vcc}-\mathrm{Vee}) /(\mathrm{Rc}+\mathrm{Re}) \quad$ Vce intercept $=\mathrm{Vcc}-\mathrm{Vee} \quad$ Slope $=-1 /(\mathrm{Rc}+\mathrm{Re})$

Note: Vee $=0$ in a single-ended dc power supply

AC Load Line Slope $=-1 /\left(\left[R c / /\right.\right.$ ro $\left.\left./ / R_{L}\right]+\operatorname{Re} 1\right) \quad$ Note: Re1 is unbypassed portion of Re
For CC (Emitter Follower) Amplifier: (Note, you must know how to derive these, if asked on the test)

$$
\mathrm{Av}_{\mathrm{o}}=\frac{(\beta+1) \cdot\left(\frac{\mathrm{Re} \cdot \mathrm{ro}}{\mathrm{Re}+\mathrm{ro}}\right)}{\mathrm{r}_{\pi}+(\beta+1) \cdot\left(\frac{\mathrm{Re} \cdot \mathrm{ro}}{\mathrm{Re}+\mathrm{ro}}\right)} \quad \operatorname{Rbin}=\mathrm{r}_{\pi}+(\beta+1) \cdot \frac{1}{\frac{1}{\mathrm{Re}}+\frac{1}{\mathrm{ro}}+\frac{1}{\mathrm{R}_{\mathrm{L}}}} \quad \quad \mathrm{R}_{\mathrm{in}}=\frac{1}{\frac{1}{\mathrm{Rbin}}+\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}}
$$

Rout $=(\operatorname{Re} / / \mathrm{ro}) / /\left(r_{\pi}+\mathrm{R}_{1} / / \mathrm{R}_{2} / / \mathrm{Rs}\right) /(\beta+1)$
NOTE: For "Rin_no_ R_{L} ", leave R_{L} out of the Rbin formula.
AC Load Line Slope = -1/(Re // ro // RL)
General Voltage Amplifier Model Voltage, Current, Power Gains:
Av = vout/vs = Rin / (Rs + Rin)*Avo*R $/\left(\right.$ Rout $\left.+\mathrm{R}_{\mathrm{L}}\right) \quad$ Note: For"Av" of CC Amp, replace Rin by Rin_no_RL

$$
A i=\frac{i_{\text {out }}}{i_{\text {in }}}=\frac{\left(\frac{v_{\text {out }}}{R_{L}}\right)}{\left(\frac{v_{S}}{R s+R \text { in }}\right)}=A v \cdot \frac{R s+R \text { in }}{R_{L}} \quad A p=\frac{p_{\text {out }}}{P_{\text {in }}}=\frac{v_{\text {out }} \cdot i_{\text {out }}}{v_{S} \cdot i_{\text {in }}}=A v \cdot A i
$$

