
Electromagnetic Foundations  
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Traveling waves 
Taking the curl of Faraday 
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In a charge-free (ρ=0) and current-free (J=0) region.  
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Substituting for ∇×H  using Ampere’s law (J=0), we obtain the wave equation 
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This equation is called the wave equation.   A wave equation for H can be found as well. 
Taking the curl of Ampere’s law and then substituting Faraday’s law [Again, in a charge-
free (ρv=0) and current-free (J=0) region.] 
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Together, these equations predict that an electromagnetic wave can travel through 
space.   These vector equations (one in E and one in H) would each give three scalar 
equations (one for each component of the vectors) for a total of six scalar equations.  
Using Cartesian coordinates, one scalar equation for Ex would be 
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Waves traveling in the z direction would have the form 
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Two waves are possible: one traveling in the +az direction with a speed of v = 1 με , 
the other traveling in the –az direction with the same speed.    
 
Plane Waves 
Assuming the electric vector to only have a component in the x-direction, Ex, which 
depends only on z and t. 
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Solutions are functions where the 2nd derivative with respect to z are equal to their 2nd 
derivative with respect to t (aside from a constant multiplying factor).   Sinusoids are an 
obvious choice (this particular choice travels in the +az direction). 
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Just as for sinusoidal steady state analysis in electrical circuits, harmonic analysis is 
provides a convenient notation. 
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That is, for fields that vary harmonically with time, each Fourier component can be 
described as 
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Just as in phasor analysis, the derivative with respect to time corresponds to a jω 
multiplier in the frequency domain. 
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In the frequency domain, Maxwell’s equations become, 
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Example 1 
Suppose, as above, an electric vector, pointing in the ax direction travels in the az 
direction.  How can the magnetic vector be found?  Answer:  Faraday’s Law. 
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Notice that E and H� �  are related by the field analog of Ohm’s law. 

E =  H =  H, where  =  is the intrinsic, or wave, impedance (in ).μ μη η
ε ε
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The wave impedance for an electromagnetic wave in free space (nearly the same for a 
wave traveling in air, since, in air, oε ε≅ and oμ μ≅ ) is 
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The relative directions of  and E H� �  can be determined from the fact that   ×E H  is in the 
direction of travel. In fact  = ×S E H  is known as Poynting’s vector and is the 
instantaneous power flux density, with units of W/m2, transmitted by an EM wave.   
 
For periodic fields, the time-averaged power flux density,  
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Example 2 
An electric field, of amplitude 37.7 V/m points in the az direction and travels along φ = 
45° in the x-y plane.  The wavelength is 700 nm and the medium is air.   

i)  Give the frequency domain description of E and H.  Take the phase of E� to be 
zero degrees. 

 ii)  What is the frequency of the waves?  Give their time-domain descriptions. 

 
Solution 

i) The wave number, or phase constant, β, is found from the wavelength. 
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The magnitude of the magnetic vector can be determined from the field analog of 
Ohm’s law and the direction of the vector can be determined from the fact that 

  ×E H  is in the direction of travel (as shown in the diagram above).  The magnetic 
vector travels with the electric vector (after all, we have a traveling EM wave of 
which the two vectors are part). 
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ii) The speed of propagation can be determined from the physical properties of the 

medium, in this case air.  Knowing the speed of propagation and the wavelength 
permits the frequency to be determined. 
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Reflection and Transmission 
How are EM waves reflected and transmitted when a plane dielectric boundary is 
encountered?  Consider the situation below: 

 

Define a transmission coefficient, T, and reflection coefficient, Γ. 
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From EM theory, the boundary conditions that must be met are that the tangential 
components of the electric field and the magnetic field (assuming no surface currents) 
are equal on either side of the boundary. 
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The first equation is obtained from the boundary conditions on the electric vectors. 
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So the result is two equations in Γ and Τ. 
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Solving for Γ and Τ. 
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Using these coefficients and the intrinsic impedances of the materials, one can find the 
incident, reflected, and transmitted electric and magnetic vectors in terms of the incident 
electric vector. 
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From the field vectors, the power densities can be determined. 
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Similarly, 
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Note, if the materials are conductive, the reflection and transmission coefficients, as well 
as the intrinsic impedances are complex. 
 
Standing Waves 
When reflection is present, the incident and reflected waves will interfere to produce 
standing waves in region 1. 
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In the time domain, we have 
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The standing wave ratio (SWR) is commonly used to characterize reflections from a 
surface.  The SWR is defined as the ratio between the maximum amplitude electric field 
in region 1 to the minimum electric field. 
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Where, Γ is the magnitude of Γ� .  
 



Reflection and Transmission (σ2≠0) 

 
The conductivity in region 2 leads to complex values for the reflection and transmission 
coefficients as well as for the intrinsic impedance in region 2. 
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This results in a phase shift between the incident wave and waves that are reflected and 
transmitted.  In addition, the fact that the intrinsic impedance in region 2 is complex 
leads to their being phase shifts between the electric vector and the magnetic vector in 
region 2.  
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The incident power is unchanged from the previous case, 
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The reflected power density is 
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The transmitted power density is 
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Standing Waves 
When reflection is present, the incident and reflected waves will interfere to produce 
standing waves in region 1. 
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The standing wave ratio (SWR) is commonly used to characterize reflections from a 
surface.  The SWR is defined as the ratio between the maximum amplitude electric field 
in region 1 to the minimum amplitude electric field. 
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Where, Γ is the magnitude of Γ� .  
 
Example 3 
i) Find the transmission and reflection coefficients for the situation shown below if 

medium 1 is air and medium 2 is PCB material (FR-4, σ=0, εr=4.4, μr=1).   
ii) Find the portion of the incident energy that is transported into the FR-4 material. 
iii) Find the standing wave ratio in medium 1. 
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 Knowing the intrinsic impedances, Γ and Τ are readily calculated. 
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 Notice that the standing wave ratio must be between 1 and ∞. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Transmission Line Fundamentals 

Transmission lines are a special case of solutions to Maxwell’s equations when the 
properties of the physical system do not change in one direction (typically taken to be 
the z-direction). 

 
 
Employing frequency domain analysis is convenient when working with transmission 
lines.   In frequency domain analysis, one assumes that all fields vary sinusoidally in 
time.   Suppose a source axEscos ωt produces, in response, an electric vector which 
travels in the az direction. 
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If the system is linear, the complex source axEs(cos ωt + j sin ωt) would produce a 
complex response. 
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Example 4 
An example will illustrate the form that Maxwell’s equations have in the frequency 
domain.  Using Faraday’s law with j t j t=  e  and   = eω ωE E B B . 
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Note that  and E B  have no time dependence and that ejωt has no spatial dependence.  
This allows the curl to pass through ejωt and B to pass through the time derivative. 
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In the frequency-domain version of Faraday shown above, and E B  are the frequency 
domain field vectors.  They are not the time domain vectors.  The time domain vectors 
can be recovered by putting the time dependence back and taking the real part. 
 



Taking the electric vector used in this example to demonstrate,  
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This result can be generalized to express Maxwell’s equations in the frequency domain  
(current and charge-free) 

=   -j

=    j

 =   0

=   0

ω

ω

∇×

∇×

∇ ⋅

∇ ⋅

E B
H D

D
B

 

Combining the equations (as was done above in the time-domain), one obtains the 
Helmholtz wave equation 
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Plane waves are solutions. 
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It is important to note that the Laplacian operator can always be split into two pieces—
one piece which depends only on a variable which varies in the direction of travel (in 
this case, z) and the other piece which depends only on variables which vary in 
directions transverse to that of travel (in this case, x and y). 
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Special types of solutions exist in transmission lines (coaxial lines, microstrip, twin-lead) 
for which the az component of E and H are zero.  These solutions are transverse 
electromagnetic waves. 
 
The equation above can be split into two pieces, both of which must be satisfied. 
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In the first, since 2
t∇  does not involve the variable along the direction of travel,  
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In the second, since non-zero solutions for and E B  are sought, we must 
have 2 2  -  = 0ω με β  for traveling waves along a transmission line. 
 
Transverse Electromagnetic (TEM) waves 
The fields are of the form 
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Here the direction of travel is ±az.  Waves having a z-dependence of e-jβz travel in the 
+az direction and waves with ejβz dependence travel in the -az direction. 
 
Since the transverse fields satisfy 2 2

t t t t=0  and  =0∇ ∇E H , the form of the waves in 
transverse directions are solutions are static solutions. 
 
Example 5  

 
 
To find the electric field, first note that, by symmetry, the field must point in the aρ 
direction (using cylindrical coordinates) and its magnitude can only depend on ρ.   This 
allows the integral form of Gauss’ law to be readily used.   
 

 



Gauss’ law, in integral form, reads  
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Applying Gauss’ law for the Gaussian surface shown, for a < ρ < b, 
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To find the magnetic field, first note that, by symmetry, the field must point in the aφ 
direction (still using cylindrical) and its magnitude can only depend on ρ.  This allows the 
integral form of Ampere’s law to be readily used.   
 

 
 
Ampere’s law, in integral form, reads 
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The transverse fields, found using statics, can are then used to find the traveling wave.  
In the frequency domain these fields are   
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With transmission lines, one is often not concerned with the details of the fields but 
rather is often more interested in the terminal current voltage equations.     
 
In his work with transmission lines, Oliver Heaviside developed the telegrapher 
equations which involve traveling voltage and current waves rather than traveling 
electric and magnetic fields. 
 
Voltage & Current Waves: Telegrapher’s equations 
 

 
 
 

 Using Faraday’s law, 
path    area 

bounded
 by path

d  d   = -   d
dt∫ ∫∫E l B si iv , where dl and ds are related via 

the right hand rule.  Using frequency-domain field vectors, 
path    area 

bounded
 by path

 d   = -j   dω∫ ∫∫E l B s� �i iv . 

Carrying out the path integral, Faraday’s law shows that 

area

area

 d
V(z+ z) - V(z) = -j   d  = -j I

I
ω ωΔ

∫∫
∫∫

B s
B s

� i
� � � �i �  

Where the quantity, area

  d

I

∫∫ B s� i

� , being a ratio of flux to current is clearly the inductance 

of the loop.   
V(z+ z) - V(z) = -j I LωΔ� � �  

 
By dividing the the interval Δz, and taking the limit as Δz → 0, one obtains, 

z  0 z  0

V(z+ z) - V(z) Llim  = -j I lim  = -j I 
z z

ω ω
Δ → Δ →

⎛ ⎞Δ
⎜ ⎟Δ Δ⎝ ⎠

� � � �L  



Where L is the inductance per unit length of the transmission line.  The result is the first 
of the Telegrapher equations (this equation if for a line without loss). 
 

dV = -j I 
dz

ω
� �L  

 
 
The second telegrapher equation is revealed through charge conservation.  
 

 
 

From charge conservation, s
surface surface

dQ d dI(z) - I(z+ z) =  =  ds =   d
dt dt dt

ρΔ ∫∫ ∫∫ D si . 

Using frequency-domain field vectors, 

surface

surface

 d
I(z) - I(z+ z) = j   d  = j V

V
ω ωΔ

∫∫
∫∫

D s
D s

� i
� � � �i �  

Where the quantity surface

  d

V

∫∫ D s� i

�  is clearly the capacitance of the line section, C. 

I(z) - I(z+ z) = j V C         I(z+ z) - I(z) = -j V C ω ωΔ ⇒ Δ� � � � � �  

 
By dividing by Δz and taking the limit as Δz → 0, one arrives at the second Telegrapher 
equation (again for the case of the lossless transmission line). 

0 0

I(z+ z) - I(z) Clim  = -j V lim
z z

d I                 =  -j V 
dz

z z
ω

ω

Δ → Δ →

Δ
Δ Δ

� � �

� � C

 



Lossless Transmission Lines 
circuit model 
 

 
 

governing equations 
 

dV = -j I 
dz

ω
� �L  

 
d I =  -j V 
dz

ω
� � C  

 
Taking a derivative with respect to z of the first Telegrapher equation and substituting 
the second equation, one obtains: 

( )
2 2

2 2

2
2

2

d V d I d V = -j             = -j  -j  V 
dz dz dz

d V                     + LC V = 0
dz

ω ω ω

ω

⇒L L C
� � � �

� �
 

Similarly,  

( )
2 2

2 2

2
2

2

d I dV d I = -j             = -j  -j  I 
dz dz dz

d I                     + LC I = 0
dz

ω ω ω

ω

⇒C C L
� � � �

� �
 

Solutions are traveling waves 
j j+ -j z - j z + + - -V = V e  + V e    where     V  = V e  and V  = V ev vϕ ϕβ β + −� � � � �  
j j+ -j z - j z + + - -I = I e  + I e       where     I  = I e  and I  = I ei iϕ ϕβ β + −� � � � �  

where  = β ω LC  is the phase constant.    
 
Consider a voltage wave traveling in the +z direction and determine the relation 
between voltage and current.   The ratio between the voltage and current waves is the 
transmission line’s characteristic impedance, Zc. 
 

+ -j z

+ -j z + -j z + -j z

+
-j z

c

dVusing V = V e  in the Telegrapher eq.  = -j I 
dz

-j -j-j V e  = -j I          I = V e  =  V e
-j -j

V                   I =  e          Z  = 

β

β β β

β

ω

β ωβ ω
ω ω

⇒

⇒

L,

LC
L

L L

L
CL C

�� � �

� � � � �

��

 

 



Lossy Transmission Lines 
Transmission lines serve to guide electromagnetic waves.  As the waves travel along 
the transmission lines, there are three main sources of loss: 1) Joule heating or copper 
losses, 2) dielectric losses, and 3) radiation. 
 
Joule Heating – as the EM wave travels along the conductors of the transmission line, 
the electromagnetic wave enters the conductors—typically a metal—where it decays 
exponentially.   Even though the wave decays once it enters the TL conductors, the EM 
wave does enter them to a degree.   Inside the conductor, the EM field accelerates free 
electrons, which then collide with metal atoms to make them vibrate.   The result is that 
the EM wave heats the metal.  This process is called Joule heating and is usually the 
dominant loss mechanism in transmission lines. 
 
Dielectric Losses – a dielectric is formed by fixed positive nuclei to which are bound 
negatively charged electrons.  In an ideal dielectric, an applied electric field results in 
charge separation as shown below.  Notice that, for an ideal dielectric, the force and  

motion are in the same direction for ¼ of a period (or equivalently the voltage and 
current have the same sign for ¼ of a period) and then are in opposite directions for the 
next ¼ period.   

The result is that work is done on the dielectric (energy is stored) for ¼ of a period 
which is then given back in the next ¼ period.  This is the physical basis of capacitance.   

For a non-ideal dielectric, the charges have non-zero mass and their motion lags that 
shown.  The result is that the current is no longer 90° out of phase with the voltage 
which results in energy loss from the EM wave. 
 



Radiation Losses – anytime charge is accelerated, an electromagnetic wave is emitted. 
This loss mechanism tends to become important at higher frequencies or whenever the 
physical structure becomes a significant portion of a wavelength—especially when the 
current path is separated from its return path.  
 
The transmission line model which includes loss is 
circuit model 
 

 
 

governing equations 
 

( )dV = -  + j I 
dz

ωR L
� �  

 

( )d I =  -  + j V
dz

ωG C
� �  

As with the lossless lines, traveling waves result: 

( ) ( ) ( )
2 2

2
2 2

2
2

2

d V d I d V = -  + j             = -  + j -  + j  V =  V = V
dz dz dz

d V                                                     - V = 0
dz

ω ω ω γ

γ

⎡ ⎤⇒ ⎣ ⎦R L R L G C ZY
� � � � � �� � �

� ��
 

Similarly for the current wave 
2

2
2

d I - I = 0
dz

γ
� ��  

where 

( ) =  + j  is the series impedance,  

 =  + j  is the parallel admittance,

and  =  is the propogation constant.

ω

ω

γ

Z R L

Y G C

ZY

�

�

� ��

 

 
The propagation constant, γ� , is complex. 

 =  + jγ α β� , where α is the attenuation constant and β is the phase constant. 
 
Traveling wave solutions 

+ - z - z + - z -j z - z j zV = V e  + V e   =  V e e  + V e eγ γ α β α β� �� � � � �  
+ - z - z + - z -j z - z j zI = I e  + I e   =  I e e  + I e eγ γ α β α β� �� � � � �  

In the time domain 
+ - z + - z -

v vv(t) = V e cos( t - z + ) + V e cos( t + z + )α αω β ϕ ω β ϕ  
+ - z + - z -

i ii(t) = I e cos( t - z + ) + I e cos( t + z + )α αω β ϕ ω β ϕ  



Low Loss Transmission Lines  
When transmission lines are lossy, nearly always they are low-loss ( ωR L�  and 

ωG C� ).   The general case is seldom and will not be treated here.  For the more 
common low loss case, the expression for the propagation constant, γ� , can be 
simplified. 

( )( ) =  =  + j  + j  = j  1 - j 1 - j

  j  1 - j 1 - j  for   and 
2 2

γ ω ω ω
ω ω

γ ω ω ω
ω ω

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞≅ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

R G
ZY R L G C LC

L C

R G
LC R L G C

L C

� ��

� � �

 

This can be further simplified. 

2  j  1 -  - j - j
4 2 2

γ ω
ω ω ω

⎛ ⎞≅ ⎜ ⎟
⎝ ⎠

GR R G
LC

LC L C
�  

The second-order term can be neglected. 

  j  1 - j - j  =  +  + j
2 2 2 2

              =  + j    +  + j
2 2

γ ω ω
ω ω

γ α β ω

⎛ ⎞≅ ⎜ ⎟
⎝ ⎠

≅

R G R C G L
LC LC

L C L C

R C G L
LC

L C

�

�

 

Most often copper loss dominates the attenuation constant.  In this case 

 =  + j    +  j         (low-loss where  is determined by copper loss)
2

γ α β ω α≅
R C

LC
L

�  

 

What is the nature of this propagation constant?   First, the phase constant is the same 
as that found for the lossless case.   This gives the important result that the phase 
velocity of the wave is the same as for the lossless case. 

p
1v  =  = ω

β LC
 

Second, α is usually small, which might lead one to question whether it is really 
necessary or whether one might assume that α = 0.   Since the attenuation factor is the 
product of αz, the answer to this question depends on 1) how long the transmission line 
is and 2) what magnitude changes are considered important in a particular application. 
 
 
 



Example 6 
Consider a transmission line with 

  = 5 H/m,  = 0.02 F/m,  = 0.01 /m,  = 0 and f = 1 GHzμ μ ΩL C R G  

i)  How long would the transmission line need to be for a voltage wave to suffer 5% 
 attenuation? 

ii) What is the speed of propagation? 

iii) What is the wavelength? 

iv) What is the characteristic impedance? 

 

Solutions 
Using these values, the propagation constant can be determined. 

( ) -1 =  + j    +  j  = 0.000316 + j1986.9  m
2

γ α β ω≅
R C

LC
L

�  

i) Let the length of line = d. 
-0.000316de  = 0.95         d = 162.3 m⇒  

In this case, even though α is quite small, if d = 162.3 m, there will be 5% attenuation.  
α, even if small, cannot be ignored for long lines. 
 

ii) 6
p

2 fv  =  =  =  = 3.16(10 ) m/sω π
β β

1
LC

 

 

iii) pv2 =  =  = 3.16 mm
f

πλ
β

 

 
iv) Strictly speaking the characteristic equation for a lossy line is complex. 

-6 -6
c

 + jZ  =  =  = 15.8 - j2.5(10 )   = 15.8 -9.1(10 )°   15.8  
 + j

ω
ω

⎡ ⎤ Ω ∠ Ω ≅ Ω⎣ ⎦
Z R L

G CY

��
�  

This example makes it clear that, even though cZ�  is actually complex, it is so nearly real 
that it hardly matters in nearly all practical cases.   Therefore, to determine the 
characteristic impedance, one would use  

cZ  =  = 15.8 ΩL
C

 



Example 7 
Consider the following RG-58 coaxial cable operating at 100 MHz.   The specifications 
provided by the manufacturer are 
 

C = 30 pF/ft             vp = 2(10)8 m/s          Zc = 50 Ω             α = 4.5 dB/100ft 
 

i) Convert C to pF/m 
ii) From C and Zc, determine L  (could also use C and vp or vp and Zc) 
iii) Convert α to nepers/m, then find R. 
 
 

i) pF 1 ft 1 in = 30   = 98.4 pF/m
ft 12 in 0.0254 m

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

C  

 

ii) ( )22 -12
c cZ  =              = Z  = 50  98.4(10 ) F/m = 0.246 H/m μ⇒ Ω

L
L C

C
 

 

iii) -1dB 1 neper 1 ft 1 in neper = 0.045   = 0.017  = 0.017 m
ft 8.686 dB 12 in 0.0254 m m

α ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

 cfor G = 0,  =              = 2  = 2  Z = 1.7 /m
2

α α α⇒ Ω
R C L

R  
L C

 

 
 

Check     
-7

c -11
2.46(10 ) H/mZ  =  =  = 50 
9.84(10 ) F/m

Ω
L
C

 

 

Check     8
p -7 -11

1 1v  =  =  = 2.0(10 ) m/s
2.46(10 ) H/m  9.84(10 ) F/m⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦LC

 

 
 
 
 
 
 
 
 



Time Domain Reflectometry 
Just as traveling electromagnetic waves are both reflected and transmitted at 
discontinuities, so are traveling voltage and current waves.   With EM waves, the 
boundary conditions were continuity of the tangential components of the electric and 
magnetic vectors.  With voltage and current waves, Kirchoff’s Voltage Law (KVL) and 
Kirchoff’s Current Law (KCL) furnish the necessary boundary conditions. 
 

 

tr

i iz=0 z=0

VV =                 T = 
V V

Γ  

( )

( )

i r t i i

i i
 i  r  t

c1 c2

V  + V  = V                    V 1 +  = VT

V VI  - I  = I                       1 -  = T      
Z Z

⇒ Γ

⇒ Γ ⇒

� � � � � ��

� �� � � ��
� �

 

 
Solving for  and TΓ ��  
 

c2 c1

c2 c1

c2

c2 c1

Z  - Z=  
Z  + Z

2ZT = 
Z  + Z

Γ
� �

�
� �

�
�

� �

 

 
The above boundary conditions may need some explanation.    The boundary 
conditions state that, at z=0, the total voltage in region 1 ( i rV  + V� � ) must equal the total 

voltage in region 2 ( tV� ).    Likewise the total current in the az direction in region 1 at z=0 

(  i  rI  - I� � ) must equal the current in the az direction at z=0 in region 2 (  tI� ).    
 
Sometimes it seems unclear why the total current in region 1 is i  rI  - I� �  and not  i  rI  - I� � .  
The more detailed diagram below may help. 



 
From this diagram, it is clear that the total voltage in region 1 is i rV  + V� �  and that the total 

current in region 1 is  i  rI  - I� � . 

 
Lumped-element loads 
The reflection coefficient would be unchanged if, instead of a second medium with 
characteristic impedance c2Z� , there were a lumped element with this same impedance, 

L c2Z  = Z� � . 

L c1

L c1

L

L c1

Z  - Z=  
Z  + Z

2ZT = 
Z  + Z

Γ
� �

�
� �

��
� �

 

 
Consider three important special cases. 

1)  Matched load ( L c1Z  = Z� � ) 

  = 0Γ� ,  no reflections. 
 

2)  Short circuit ( LZ  = 0� ) 

 = -1Γ� ,  reflected voltage cancels incident voltage ( ( )1 i r0 0
V  = V  + V  = 0

z z= =

� � �  

3)  Open circuit ( LZ  = ∞� ) 

 = 1Γ� ,  reflected voltage is equal to the incident voltage.  The total voltage at 
   z=0 is twice the incident voltage   

 
In general, for a passive load, the reflection coefficient Γ�  exists on or within the unit 
circle in the complex plane.  
 



Traveling Waves  
Consider a voltage pulse traveling down a transmission line. 

 
In the frequency domain, this voltage pulse consists of a range of frequencies.  If losses 
are not a function of frequency (that is, if α is not a function of frequency) and if the 
phase velocity, vp, is not a function of frequency, the relationships between the pulse’s 
frequency components will remain unchanged as it travels and the pulse will retain its 
shape.  Losses result in the pulse decreasing in magnitude, but, if vp is independent of 
frequency, the pulse’s shape will be unchanged as it travels.  
 
Going further, if the transmission line is lossless (if the losses can be neglected), and if 
vp is not a function of frequency, the pulse will remain unchanged, both in amplitude and 
in shape as it travels along the transmission line.   This is the important special case 
that will be considered in regards to Time Domain Reflectometry (TDR). 
 
Transient Waves on Lossless lines 
Consider the situation below where a transmission line is fed from a voltage source with 
a source resistance, Rs.    

 
How will this system’s transient response evolve?  There is no doubt regarding the 
eventual response.  As time elapses, the response will be that of a simple two resistor 
circuit—the transmission line having no effect as it is just two conductors for DC. 

 

Where L
L

s L

RV  =  1V
R  + R

.   

How does the system evolve, beginning at t = 0+ to t → ∞? 



 
At t = 0+, the only location involved is at z = 0.  At t = 0+, the system, at z = 0, can be 
modeled by two resistors in series—Rs and Zc. 

 

Where + c
o

s c

ZV  = 1V
R  + Z

.  The initial traveling step voltage can be described as 

+ c
o

s c p

Z zV (z,t) =  u(t - )
R  + Z v

 

This initial step voltage will travel down the transmission line until it encounters the 
discontinuity at the load with a reflection coefficient, LΓ� , at which point a reflected wave, 

-
oV (z,t) , traveling in the –az direction, will be created. 

L c
L

L c

R  - Z = 
R  + Z

Γ�  

( )- c c
o L L

s c p p s c p p

d - zZ Zd 2d zV (z,t) =  u t -  -  =   u t -  + 
R  + Z v v R  + Z v v

⎡ ⎤ ⎡ ⎤
Γ Γ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
� �  

This reflected wave will then travel in the –az direction until it encounters the 
discontinuity at the source and will, itself be reflected with a reflection coefficient, sΓ� . 

s c
s

s c

R  - Z = 
R  + Z

Γ�  

+ c
1 L s

s c p p

Z 2d zV (z,t) =   u t -  - 
R  + Z v v

⎡ ⎤
Γ Γ ⎢ ⎥

⎢ ⎥⎣ ⎦
� �  

The wave reflected at the source will then travel to the load where a wave will be 
reflected to travel to the source, etc. 
 
 
 
 



For the nth wave traveling in the +az direction 

( )n+ c
n L s

s c p p

Z 2nd zV (z,t) =   u t -  - 
R  + Z v v

⎡ ⎤
Γ Γ ⎢ ⎥

⎢ ⎥⎣ ⎦
� �  

 For the nth wave traveling in the -az direction 

( ) ( )n- c
n L L s

s c p p

2 n+1 dZ zV (z,t) =    u t -  + 
R  + Z v v

⎡ ⎤
Γ Γ Γ ⎢ ⎥

⎢ ⎥⎣ ⎦
� � �  

The voltage, v(z,t), is the sum of these waves 

( )

( ) ( )

N nc
L s

n = 0 s c p p

N nc
L L s

n = 0 s c p p

Z 2nd zV(z,t) =   u t -  - 
R  + Z v v

2 n+1 dZ z+     u t -  + 
R  + Z v v

⎡ ⎤
Γ Γ ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

Γ Γ Γ ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

� �

� � �
 

What form does this expression have for t → ∞? 

( )

( ) ( )

( ) ( ) ( ) ( )

nc
L s

n = 0 s c p p

nc
L L s

n = 0 s c p p

n nc c
L s L L L s

n = 0 n = 0s c s c

Z 2nd zV( ) =   u  -  - 
R  + Z v v

2 n+1 dZ z+     u  -  + 
R  + Z v v

Z ZV( ) =  1 +  = 1 +  
R  + Z R  + Z

∞

∞

∞ ∞

⎡ ⎤
∞ Γ Γ ∞⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

Γ Γ Γ ∞⎢ ⎥
⎢ ⎥⎣ ⎦

∞ Γ Γ Γ Γ Γ Γ

∑

∑

∑ ∑

� �

� � �

� � � � � �

 

( )Lc

s c L s

1 + ZV( ) = 
R  + Z  1 - 

Γ
∞

Γ Γ

�
� �  

Where the formula for the geometric series, n

n = 0

1a  =     ,for a<1
1 - a

∞

∑  was utilized. 

A bit of algebra shows that this simplifies (as it must) to 

L

s L

RV( ) = 
R  + R

∞ . 

 
 
 



Bounce Diagrams 
This process is often analyzed using bounce diagrams.  A bounce diagram is a plot in 
the z-t plane of the positive and negatively traveling waves. 
 

 
A signal travels the length of the transmission line (z=d) in one delay time, td.  As can be 
seen in the above diagram, the slope of the transmission line is inversely proportional to 
the phase velocity.  The value of the voltage at particular values of z and t is found by 
summing the voltages above this point in the bounce diagram. 
 
Example 8 

 
 
The voltage at a particular position and time (zo and to in this example) is found by 
adding all the voltages above the point in the bounce diagram plot. 
 

+ - + - +
o o o o 1 1 2V(z , t ) = V  + V  + V  + V  +V� � � � � �  



Example 9 
Given the system below 

 
i)  Complete a bound diagram to t = 4td. 
ii) Find v(5 m, 25 ns), v(10 m, 150 ns), v(7.5 m, 350 ns), and v(2.5 m, 250 ns) 
iii) Determine vL(t →  ∞) 
iv) Sketch v(5 m, t) and v(10 m, t) for 0 < t < 4td. 
 
i) 

 
ii) v(5 m, 25 ns) = 0 V 
 v(10 m, 150 ns) = 12 V + 6 V = 18 V 
 v(7.5 m, 350 ns) = 12 V + 6 V – 2 V – 1 V = 15 V 
 v(2.5 m, 250 ns) = 12 V + 6 V – 2 V = 16 V 
 

iii)  L
150 v (t ) = 18 V   15.4 V

25  + 150 
Ω⎛ ⎞→ ∞ ≅⎜ ⎟Ω Ω⎝ ⎠

 

iv)  

 



Reactive Loads 
When transmission lines are terminated in reactive elements, the reflection varies with 
time. 

 

 
 

For this case, the transmission line terminated in a capacitance, the reflection coefficient 
at the load will vary from -1 (when the incident wave first encounters the capacitance) to 
1 (after the capacitor is fully charged). 
 
Physical Explanation    
When the positively traveling voltage wave impinges upon the capacitance, the 
capacitance will be uncharged.  The voltage across a capacitance cannot change 
instantaneously.  This fact can be seen in the element relation for the capacitance.   

dv 1 dqi = C           dv = i dt = 
dt C C

⇒  

Clearly, charge cannot accumulate instantaneously which then prevents an 
instantaneous change in capacitance voltage. 
 
This is important here because, when the positively traveling wave first impinges on the 
capacitive load, the capacitor will remain unchanged and the voltage across it will 
remain zero.  At that instant, the capacitor will act as a short circuit, so will require the 
sum of the incident wave and reflected wave—at that instant—to be zero.  For 
t=td, L  = -1Γ� . 

 
As time elapses and the capacitance becomes fully charged, its current will become 
zero and the capacitance will act as an open circuit.  For large t, L = 1Γ� . 

 
For t > td, the reflection coefficient changes from -1 to +1.   The rate of change is that of 
a first-order circuit with a time constant τ=ZcC. 
 
 



Analysis 

p

p p

+ +
o o

p p

d- s
v

+
o

d d- s - s
v vc

-
o L

c

o

z dV (z,t) =  u(t - )                V (d,t) =  u(t - )
v v

eIn the s-domain      (d,s) =  
s

1  - Ze esC(d,s) =   = , which, using partial fraction expansion, becomes1s s + Z
sC

⇒

Γ

V

V

V
p p

d d- s - s
v v

-

c

e e(d,s) =  - 2 1s s + 
Z C

 

The inverse transform for this s-domain expression is readily found 

( )p

c-
o

p

t - d/v
-

Z C dV (d,t) = 1 - 2 e u(t - )
v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The reflected voltage and the total voltage at the load can be sketched. 
 

 
 
The reflection coefficient evolves with a time constant of ZcC, 

 



Consider, for the same system, the voltage at the source.  Note that the source is 
matched to the transmission line so that s = 0Γ� . 

 
Note: Due to losses, curves measured in the laboratory will not have as sharp as the 
ideal model predicts.  An actual curve may look something like 

 
 
 
Example 10 
As a second example of reactive loads consider a RL load—an inductance in series 
with a resistance as shown below. 
 

 
 
As with the previous example, the source is matched to the line so that there will be no 

+
1V�  wave (or - + -

1 2 2V , V , V , etc.� � � ). 
 
 
 
 
 
 



Analysis 

p

p p

d- s
v

+ +
o o

p

d d- s - s
v v

- L c
o L

L c
d-
vL c

- L c
o

d eV (d,t) =  u(t - )                        (d,s) =  
v s

R  + sL - Ze e(d,s) =   = , which, using partial fraction expansion, becomes
s R  + sL + Z s

R  - Z e
R  + Z(d,s) = 

⇒

Γ

V

V

V

p p

ds - s
vc

L c

L c

2Z e
R  + Z + R  + Zs s + 

L
 

( )L c
p

R  + Z t - d/v
- LcL
o

L c p L c p

- +
o d d

- L c
o

L

ZR d dV (d,t) = u(t - ) + 2  - 1  u(t - )
R  + Z v R  + Z v

check:  V (d,t ) = 1        (for t = t , the inductance acts as an open circuit)
R  - Zcheck:  V (t ) = 
R

e
⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

→ ∞
c

   (for t , the inductance becomes a short circuit)
 + Z

→ ∞

 

 
At the load, z=d, for the reflected wave (left graph) and for the total voltage (right graph). 

 
 
 
 
 
 
 
 
 
 



Total voltage at the input to the transmission line, z=0. 

 
 
Note: Due to increased losses at high frequencies, curves measured in the laboratory 
will not have as sharp as the ideal model predicts.  Actual curves may look like 

 
 
Example 11 
A 10 volt pulse is introduced into a 75Ω transmission line having vp= 108 m/s.   11.3 μs 
later, a -2 volt pulse is observed at the TDR unit.   What information is available about 
the discontinuity and its location? 
 

 
 
Solution 
From v(t) at the input to the transmission line, the reflection coefficient can be 
determined.  From this measured Γ, the load impedance can be calculated. 

-
L c

L+
L c

Z  - Zv =  = -0.2 =                      Z  = 50 
v Z  + Z

Γ ⇒ Ω  

 



From the time of the reflected pulse, the distance to the load (z = d) can be determined.  
Note that the time is the sum of the time required for the incident pulse to reach the load 
and the time required for the reflected wave to reach the input. 

r p
r

p

t v2dt  =             d =   
v 2

⇒  

d = 56.5 m 
 
 
Further discussion 
Note that a pulse can be considered as the sum of two step functions and that, likewise, 
the reflection can be considered as the sum of two step functions. 
 

 
 
This viewpoint is especially valuable when considering reflections from reactive loads.  
For example, consider the results when a pulse is applied to the above 75 Ω line with a 
load consisting of a capacitance in parallel with a 50 Ω resistance.  In this case, the Γ 
will initially be -1 and will decay to -0.2 as the capacitance charges.  
 

 
 
 
 
Example 12 
Consider the system below. 

 



For the input voltages shown below, determine Zc, d,  
and the load. 
 
i)  
 
 
 
 → From v+, Zc = 200 Ω. 
 → From the time of reflected waves (tr = 3 μs), d = 300 m. 
 → From the shape of the reflected waves, the load is a resistance combination.  
  From its amplitude, R = 2200 Ω. 
 
 
ii)  
 
 
 
 
 → From v+, Zc = 50 Ω. 
 → From the time of reflected waves (tr = 4 μs), d = 400 m. 
 → From the shape of the reflected waves, the load is a parallel RC  combination.  
  Since Γ → 0 as t grows larger, R = Zc = 50 Ω. 
  From this measurement, C could also be determined from the time constant of 
  the reflected waves.  From these curves, an accurate measure of τ is difficult, 
  but approximating τ = 0.1 μs. 

0.1 s = RC          C =      = 2 nF
R 50 
τ μτ ⇒ ≅

Ω
 

 
iii) In this case, d is known to 
 be 400 m. 
  
 → From v+, Zc = 25 Ω. 
 → Since there are no reflections, ZL = Zc = 25 Ω. 
 
 
 
 
 



Example 13 
Given the lossless transmission line below connecting the 25 Ω source to ZL.   Find 
 i)  Zc    ii)   LZ�    iii)  vp   iv) C    v)  L 

 

 
 
 
Solution 
i) Zc can be calculated from the voltage of the initial pulse. 

+ c
c

c

Zv  = 100 V = 125 V                 Z  = 100 
Z  + 25 

⇒ Ω
Ω

 

 
ii) LZ�  can be determined from the reflection coefficient.  From the shape of the 

reflected pulse, it can be seen that the load must be real.  Also, since the reflected 
wave is positive, ZL > Zc. 

L s L

L c
L L

L c

(1+ ) = (1 - 0.6) = 0.08        
Z  - Z = 0.2 =             Z  = 150   
Z  + Z

Γ Γ Γ

Γ ⇒ Ω
 

 

iii) 8
p -9

r

2d 2 (5 m)v  =  =  = 2(10 ) m/s
t 50(10 ) s

 

 

iv) c
p c

p c p

Z1 1v  =    and   Z  =                     =     and     =     
v Z v

⇒
L

L C
LC C

 

 
( ) 8

c p

1 1 =   =  = 50 pF/m      
Z v 100  2(10 ) m/sΩ

C  

 

v) c
8

p

Z 100   =  =  = 0.5 H/m   
v 2(10 ) m/s

μΩ
L  

 


