EC341 – ELECTROMAGNETIC WAVES

FINAL EXAM

Closed Book Two single-sided 8½"x11" formula sheets and a calculator are allowed. For full credit: 1)work neatly, 2)give appropriate units on answers, 3)properly use vector notation, 4)use proper notation for time- and frequency-domain quantities, and 5)clearly show all your work. Point values are shown with each problem.

"NO AID GIVEN, RECEIVED, OR OBSERVED."

Signature

Name

constants and material properties $\varepsilon_{o} = 8.854(10^{-12}) \text{ F/m}$ $\mu_{o} = 4\pi(10^{-7}) \text{ H/m}$

 $\sigma_{copper} = 5.8 \times 10^7 / \Omega m$

final exam: f03

1. Use a single susceptance tuner (assume 75 Ω lines) to match $\tilde{Z}_{L} = (300 + j225)\Omega$ to $\tilde{Z}_s = (75\text{-}j150)\Omega$. Attach Smith Chart.

d_{TL} = _____ (9 pts) d_{scs} = _____ (9 pts)

Neatly show physical connections, in detail, for system (7 pts)

- 2. An electromagnetic wave, traveling in the \mathbf{a}_z direction, is polarized with its electric vector in the \mathbf{a}_x direction. At z=0, the wave has a time-averaged power flux density $\langle \mathbf{S} \rangle = 10 \text{ kW/m}^2 \mathbf{a}_z$. The frequency is f=10GHz with material properties $\mu_r=1$, $\varepsilon_r=16$, and $\sigma=10 \text{ S/m}$ Take the phase of $\tilde{\mathbf{H}}$ to be
 - i) Can this material be classified as a good conductor or as a good dielectric? (4 pts) Why or Why not?
 - ii) Give the appropriate formula for the complex propagation constant, $\tilde{\gamma}$. Use an approximate formula if appropriate. DO NOT EVALUATE $\tilde{\gamma} = (421 + j938) \text{ m}^{-1}(3 \text{ pts})$
 - iii) Give the appropriate formula for the complex intrinsic impedance, $\tilde{\eta}$. Use an approximate formula if appropriate. DO NOT EVALUATE $\tilde{\eta} = 76.8 \angle 24.2^{\circ} \Omega$ (3 pts)
 - iv) Find the frequency-domain magnetic and electric vectors as functions of position. (6 pts)

v) Find the time-averaged Poynting vector (6 pts)

vi) Find the phase velocity (3 pts)

0° at z=0.

- 3. From the TDR experimental results shown below, determine:
 - i) Z_c (5pts)
 - ii) v_p (5pts)
 - iii) £ (5pts)
 - iv) C (5pts)
 - v) Type of reactive element in series with R_L (clearly explain why) and R_L (5pts)

4. For the system shown below, involving a lossless transmission line, determine:

i) The reflection coefficient at the load, $\tilde{\Gamma}_{L}$ (6 pts) (Use formula...you may check with Smith Chart)

ii) Give the formula which could be used to determine \tilde{Z}_{in} , the input impedance of the transmission line. Find \tilde{Z}_{in} using either the formula *or* a Smith chart (Do *not* attach Smith Chart). (7 pts)

iii) The phasor voltage input to the transmission line ($\tilde{V}_{_{in}}).$ (6 pts)

iv) The average power delivered to the transmission line. (6 pts)

5. In experiment 1, the critical angle for the system shown below is known to be, $\theta_c = 30^\circ$. In a experiment 2, the magnitude of the *reflected* vector, \tilde{E}_r , is measured to be 1 V/m and the angle of *refraction*, θ_t , is measured to be 60°. For the experiment 2, determine:

- i) The incident angle, θ_i . (5 pts)
- ii) The incident time-averaged power density, $\langle \underline{S}_i \rangle$. (Give magnitude and a unit vector.) (10 pts)

iii) Find the portion of the incident power that is reflected and transmitted. (10 pts)

- Check T/F either T or F (2½ pts each) 6.
 - Measurements in a lossless material indicate that for a frequency of 1GHz, $\lambda = 7.5$ cm and for an electric field magnitude of 377V/m, the magnetic field magnitude is 2 A/m. Therefore, $\varepsilon \cong 4\varepsilon_0$. Why or why not?
 - Measurements on a lossless line indicate that $Z_c=50\Omega$ and $\mathcal{C}=100\text{pF/m}$. Therefore, $v_p=2(10^8)$ m/s. Why or why not?
 - _ A lossy transmission line is terminated with a short circuit. \tilde{Z}_{in} is purely imaginary.
 - ____ A lossless transmission line, d=4.25 λ , is terminated with $\tilde{Z}_1 = (50 + j50)\Omega$. Since the line is an integral number of 1/4 wavelengths, $\tilde{Z}_{in} = \tilde{Z}_{i}$.
 - _ If the transmission line parameters, \mathcal{R} , \mathcal{G} , \mathcal{L} , and \mathcal{C} , are independent of frequency, distortionless transmission must result. Why or why not?
 - ____ The VSWR at the input of a short-circuited length of a lossless transmission line is infinite.
 - ____ For transmission lines, in the low-loss approximation and given that R, L, G and C are independent of frequency, the phase velocity is independent of both frequency and loss.
 - In order to obtain distortionless transmission, β and v_{p} must be independent of frequency.
 - A 20m, 50 Ω lossless transmission line fed from a 50V step function source having a 100 Ω resistance. The line is connected to a 100 Ω load. The phase velocity is 10⁸m/s. 0.2 μ s is required for the system to reach steady-state.
 - If σ for a good conductor is not a function of frequency, the resistance will be independent of frequency. Why or why not?

7. i) A 1.8 λ , 50 Ω transmission line, α =0.3neper/ λ , is terminated by a (50+j120) Ω load. Use a Smith chart (Do **not** attach) and calculator to find $\tilde{\Gamma}_{L}$, $\tilde{\Gamma}_{in}$, and \tilde{Z}_{in} . (7 pts.)

ii) From measurement on a lossless 75Ω transmission line, VSWR = 4. The first voltage minimum occurs 1m and the second occurs 2.5 from the load. Use a Smith chart (Do **not** attach) and

calculator to determine λ_{-----} , $\tilde{\Gamma}_{L}_{------}$ and $\tilde{Z}_{L}_{-------}$. (8 pts.)

iii) Use a 1/4- λ transformer (use 50 Ω lines) to match $\tilde{Z}_{L} = (150 + j200)\Omega$ to $\tilde{Z}_{s} = 50\Omega$.

d_{scs}, Z_{c(1/4-wave)}. (10 pts) (*Attach* Smith Chart)

Neatly show physical connections, in detail, for $\frac{1}{4}-\lambda$ transformer problem (part iii)

- 8. Check T/F either T or F (2½ pts each)
 - The quasi-static model for the parallel-plate capacitor predicts $C = \varepsilon A/d$. For this to be valid, the $\lambda^2 >> \ell^2$ must be satisfied.
 - In the quasi-static model for the inductor, 2nd-order effects predict the first corrective term to appear in the model is an capacitance in parallel with the inductance.

Given an air-core inductor with dimensions of 1cm, the quasi-static model is valid at 1GHz. *Why or why not?*

A plane wave travels in a lossy medium. The magnitude of the electric vector is 10 V/m and the intrinsic impedance is 100∠60° Ω/m. $|\langle \underline{S}_i \rangle| = 0.25 \text{ W/m}^2$.

Why or why not?

- ____ A study of quasi-statics reveals that the lumped-element model used to model physical circuit elements changes with frequency.
- Using Faraday's law, one can demonstrate that KVL is not a law of nature, but is only valid for closed loops that are **not** linked by changing magnetic fields.

Answers

- 1. $d_{TL} = 0.1\lambda$ $d_{scs} = 0.131\lambda$ 2.i) neitherii) (421 + j938) m⁻¹iii) 76.8∠24.2° Ωiv) 16.9 e^{-421z} e^{-j938z} a_y A/m1300e^{-421z} e^{-j938z} e^{j24.2°} a_x V/mv) a_z 10 e^{-842z} KW/m²3.i) 75 Ωii) 2(10⁸) m/siii) 0.375 µH/miv) 66.7 pF/miv) R_L = 25 Ω, series element is L (not req. here, but ≈ 18.75 nH)4.i) 0.707∠45° ii) 43.1∠-70.3° Ωiii) 5.65∠-38.1° Viv) 125 mW
- 5. i) 25.66° ii) 8.28 (0.9 \mathbf{a}_z + 0.433 \mathbf{a}_x) mW/m² iii) 0.32 0.68
- 6. F, T, F, F, F, T, T, F, F, F
- 7.i) $0.775 \angle 40^{\circ}$ $0.263 \angle -176^{\circ}$ $(28.5 j0.5) \Omega$ ii) 3 m $0.6 \angle 60^{\circ}$ (63.75 + 102) Ω iii) $d_{scs} = 0.276\lambda$ $Z_c = 144.3 \Omega$
- 8. T, T, (45 V, 48 V, Γ_s = 0.5, Γ_L = 0.333, t_d = 25 ns) T, T, T, T, T