EC341 - ELECTROMAGNETIC WAVES

Final Exam

Closed Book Two single-sided $81 / 2^{\prime \prime} \times 11$ " formula sheets and a calculator are allowed. For full credit:
1)work neatly, 2)give appropriate units on answers, 3)properly use vector notation, 4)use proper notation for time- and frequency-domain quantities, and 5)clearly show all your work. Point values are shown with each problem.
"No AID GIVEN, RECEIVED, OR OBSERVED."
constants and material properties

$$
\varepsilon_{0}=8.854\left(10^{-12}\right) \mathrm{F} / \mathrm{m}
$$

$$
\mu_{0}=4 \pi\left(10^{-7}\right) \mathrm{H} / \mathrm{m}
$$

$$
\sigma_{\text {copper }}=5.8 \times 10^{7} / \Omega \mathrm{m}
$$

1. Use a single susceptance tuner (assume 75Ω lines) to match $\tilde{Z}_{\mathrm{L}}=(300+j 225) \Omega$ to $\tilde{Z}_{\mathrm{s}}=(75-\mathrm{j} 150) \Omega$. Attach Smith Chart.
$\mathrm{d}_{\mathrm{TL}}=$ \qquad (9 pts)
$\mathrm{d}_{\mathrm{scs}}=$ \qquad (9 pts)

Neatly show physical connections, in detail, for system (7 pts)
2. An electromagnetic wave, traveling in the \mathbf{a}_{z} direction, is polarized with its electric vector in the \mathbf{a}_{x} direction. At $z=0$, the wave has a time-averaged power flux density $\langle\mathbf{S}\rangle=10 \mathrm{~kW} / \mathrm{m}^{2} \mathbf{a}_{\mathrm{z}}$. The frequency is $\mathrm{f}=10 \mathrm{GHz}$ with material properties $\mu_{\mathrm{r}}=1, \varepsilon_{\mathrm{r}}=16$, and $\sigma=10 \mathrm{~S} / \mathrm{m}$ Take the phase of $\tilde{\boldsymbol{H}}$ to be 0° at $z=0$.
i) Can this material be classified as a good conductor or as a good dielectric? (4 pts) Why or Why not?
ii) Give the appropriate formula for the complex propagation constant, $\tilde{\gamma}$. Use an approximate formula if appropriate. DO NOT EVALUATE $\quad \tilde{\gamma}=(421+j 938) \mathrm{m}^{-1}(3 \mathrm{pts})$
iii) Give the appropriate formula for the complex intrinsic impedance, $\tilde{\eta}$. Use an approximate formula if appropriate. DO NOT EVALUATE $\quad \tilde{\eta}=76.8 \angle 24.2^{\circ} \Omega$ (3 pts)
iv) Find the frequency-domain magnetic and electric vectors as functions of position. (6 pts)
v) Find the time-averaged Poynting vector (6 pts)
vi) Find the phase velocity (3 pts)
3. From the TDR experimental results shown below, determine:
i) Z_{c} (5pts)
ii) v_{p} (5pts)
iii) \boldsymbol{L} (5pts)
iv) \mathcal{C} (5pts)
v) Type of reactive element in series with R_{L} (clearly explain why) and R_{L} (5pts)

4. For the system shown below, involving a lossless transmission line, determine:

i) The reflection coefficient at the load, $\tilde{\Gamma}_{\mathrm{L}}$ (6 pts) (Use formula...you may check with Smith Chart)
ii) Give the formula which could be used to determine $\tilde{Z}_{\text {in }}$, the input impedance of the transmission line. Find $\tilde{Z}_{\text {in }}$ using either the formula or a Smith chart (Do not attach Smith Chart). (7 pts)
iii) The phasor voltage input to the transmission line $\left(\tilde{V}_{\text {in }}\right)$. (6 pts)
iv) The average power delivered to the transmission line. (6 pts)
5. In experiment 1, the critical angle for the system shown below is known to be, $\theta_{\mathrm{c}}=30^{\circ}$.

In a experiment 2, the magnitude of the reflected vector, $\tilde{\mathbf{E}}_{r}$, is measured to be $1 \mathrm{~V} / \mathrm{m}$ and the angle of refraction, θ_{t}, is measured to be 60°. For the experiment 2 , determine:

i) The incident angle, θ_{i}. (5 pts)
ii) The incident time-averaged power density, $\left\langle\underline{\mathrm{S}}_{\mathrm{i}}\right\rangle$. (Give magnitude and a unit vector.) (10 pts)
iii) Find the portion of the incident power that is reflected and transmitted. (10 pts)
6. Check $\boldsymbol{T} / \boldsymbol{F}$ either \boldsymbol{T} or \boldsymbol{F} ($21 / 2 \mathrm{pts}$ each)

Measurements in a lossless material indicate that for a frequency of $1 \mathrm{GHz}, \lambda=7.5 \mathrm{~cm}$ and for an electric field magnitude of $377 \mathrm{~V} / \mathrm{m}$, the magnetic field magnitude is $2 \mathrm{~A} / \mathrm{m}$. Therefore, $\varepsilon \cong 4 \varepsilon_{0}$. Why or why not? \qquad

Measurements on a lossless line indicate that $Z_{c}=50 \Omega$ and $\mathcal{C}=100 \mathrm{pF} / \mathrm{m}$. Therefore, $\mathrm{v}_{\mathrm{p}}=2\left(10^{8}\right) \mathrm{m} / \mathrm{s}$. Why or why not? \qquad

A lossy transmission line is terminated with a short circuit. $\tilde{Z}_{\text {in }}$ is purely imaginary.
A lossless transmission line, $d=4.25 \lambda$, is terminated with $\tilde{Z}_{L}=(50+j 50) \Omega$. Since the line is an integral number of $1 / 4$ wavelengths, $\tilde{Z}_{\text {in }}=\tilde{Z}_{L}$.
\qquad If the transmission line parameters, $\mathfrak{R}, \boldsymbol{\mathcal { G }}, \mathcal{L}$, and $\boldsymbol{\mathcal { C }}$, are independent of frequency, distortionless transmission must result.
Why or why not? \qquad
\qquad The VSWR at the input of a short-circuited length of a lossless transmission line is infinite.
\qquad For transmission lines, in the low-loss approximation and given that $\mathfrak{R}, \mathcal{L}, \mathcal{G}$ and \mathcal{C} are independent of frequency, the phase velocity is independent of both frequency and loss.
_ In order to obtain distortionless transmission, β and v_{p} must be independent of frequency.
_ A $20 \mathrm{~m}, 50 \Omega$ lossless transmission line fed from a 50 V step function source having a 100Ω resistance. The line is connected to a 100Ω load. The phase velocity is $10^{8} \mathrm{~m} / \mathrm{s} .0 .2 \mu \mathrm{~s}$ is required for the system to reach steady-state.
_ If σ for a good conductor is not a function of frequency, the resistance will be independent of frequency.
Why or why not? \qquad
\qquad
7. i) A $1.8 \lambda, 50 \Omega$ transmission line, $\alpha=0.3$ neper $/ \lambda$, is terminated by a ($50+j 120) \Omega$ load. Use a Smith chart (Do not attach) and calculator to find $\tilde{\Gamma}_{\mathrm{L}}$ \qquad , $\tilde{\Gamma}$ \qquad , and $\tilde{Z}_{\text {in }}$ \qquad . (7 pts.)
ii) From measurement on a lossless 75Ω transmission line, VSWR $=4$. The first voltage minimum occurs 1 m and the second occurs 2.5 from the load. Use a Smith chart (Do not attach) and calculator to determine λ \qquad ,$\tilde{\Gamma}_{\llcorner }$ \qquad and \tilde{Z}_{L} \qquad . (8 pts.)
iii) Use a $1 / 4-\lambda$ transformer (use 50Ω lines) to match $\tilde{Z}_{L}=(150+j 200) \Omega$ to $\tilde{Z}_{s}=50 \Omega$.
$\mathrm{d}_{\mathrm{scs}}$ \qquad , $\mathrm{Z}_{\mathrm{c}(1 / 4 \text {-wave })}$ \qquad . (10 pts) (Attach Smith Chart)

Neatly show physical connections, in detail, for $114-\lambda$ transformer problem (part iii)
8. Check $\boldsymbol{T} / \boldsymbol{F}$ either \boldsymbol{T} or \boldsymbol{F} ($2^{1} / 2$ pts each)
\qquad The quasi-static model for the parallel-plate capacitor predicts $C=\varepsilon A / d$. For this to be valid, the $\lambda^{2} \gg t^{2}$ must be satisfied.
\qquad In the quasi-static model for the inductor, $2^{\text {nd }}$-order effects predict the first corrective term to appear in the model is an capacitance in parallel with the inductance.

Complete bounce diagram and find $\mathrm{v}_{\mathrm{in}}(\mathrm{z}=0, \mathrm{t}=60 \mathrm{~ns})=$ \qquad and $\mathrm{v}_{\text {in }}(\mathrm{z}=0, \mathrm{t} \rightarrow \infty)=$ \qquad (71/2 pts)

\qquad For a plane wave traveling in a lossy medium, the phase of the magnetic field will lag that of the electric field.
\qquad Given an air-core inductor with dimensions of 1 cm , the quasi-static model is valid at 1 GHz .
Why or why not?

A plane wave travels in a lossy medium. The magnitude of the electric vector is $10 \mathrm{~V} / \mathrm{m}$ and the intrinsic impedance is $100 \angle 60^{\circ} \Omega / \mathrm{m} .\left|\left\langle\underline{S}_{i}\right\rangle\right|=0.25 \mathrm{~W} / \mathrm{m}^{2}$.
Why or why not? \qquad
\qquad A study of quasi-statics reveals that the lumped-element model used to model physical circuit elements changes with frequency.
___ Using Faraday's law, one can demonstrate that KVL is not a law of nature, but is only valid for closed loops that are not linked by changing magnetic fields.

Answers

1. $d_{T L}=0.1 \lambda \quad d_{\text {scs }}=0.131 \lambda$
2. i) neither
ii) $(421+j 938) m^{-1}$
iii) $76.8 \angle 24.2^{\circ} \Omega$
iv) $16.9 e^{-421 z} e^{-j 938 z} a_{y} A / m$ $1300 e^{-421 z} e^{-j 938 z} e^{j 24.2^{\circ}} a_{x} V / m$
v) $\boldsymbol{a}_{z} 10 e^{-842 z} \mathrm{KW} / \mathrm{m}^{2}$
3.

ii) $2\left(10^{8}\right) \mathrm{m} / \mathrm{s}$
iii) $0.375 \mu \mathrm{H} / \mathrm{m}$
iv) $66.7 \mathrm{pF} / \mathrm{m} \quad$ iv) $R_{L}=25 \Omega$, series element is L (not req. here, but $\approx 18.75 \mathrm{nH}$)
4.
i) $0.707 \angle 45^{\circ}$
ii) $43.1 \angle-70.3^{\circ} \Omega$
iii) $5.65 \angle-38.1^{\circ} \mathrm{V}$
iv) 125 mW
5. i) 25.66°
ii) $8.28\left(0.9 \mathbf{a}_{z}+0.433 \mathbf{a}_{\mathrm{x}}\right) \mathrm{mW} / \mathrm{m}^{2}$
iii) 0.32
0.68
6. $F, T, F, F, F, T, T, F, F, F$
7.
i) $0.775 \angle 40^{\circ}$
$0.263 \angle-176^{\circ}$
$(28.5-j 0.5) \Omega$
ii) $3 \mathrm{~m} \quad 0.6 \angle 60^{\circ}$
$(63.75+102) \Omega$
iii) $\quad d_{\text {scs }}=0.276 \lambda \quad Z_{c}=144.3 \Omega$
8. $\mathrm{T}, \mathrm{T},\left(45 \mathrm{~V}, 48 \mathrm{~V}, \Gamma_{\mathrm{s}}=0.5, \Gamma_{\mathrm{L}}=0.333, \mathrm{t}_{\mathrm{d}}=25 \mathrm{~ns}\right) \mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{T}$

