
ELECTROMAGNETIC WAVES 

Uniform plane waves in lossless media ☼ 
Solutions – time-domain 
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Solutions – frequency-domain 
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The electric and magnetic vectors perpendicular and both are perpendicular to 
the direction of propagation. 
 
 E H   = β×a a a  

 

 1  =   
ηβ ×H a E   or use Faraday’s law 

   =   η β×E H a   or use Ampere’s law 
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All kinds of applets on transmission lines, waves etc. 
http://www.educypedia.be/electronics/javatransmissinlines.htm 

 

 

 

 

 



 

341 lecture notes 
 

2 

Example:  TEM wave propagation ☼ 

An E-field is given by 9
z

x 3y =  50cos 10 t - 5  +  V/m
2 2

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

E a . (μ = μo)  Find 

 i) direction of travel 
 ii) velocity 
 iii) wavelength 
 iv) wave (or intrinsic) impedance 
 v) H 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

341 lecture notes 
 

3 

Energy, conduction current, displacement current ☼ 
From the point form of Ohm’s law, J = σE, two points can be appreciated: 

1. The conduction current and the electric field vary alike.  Changes in the 
electric field produce like variations in the conduction current. 

2. The conduction current and the electric field are in the same direction. 
 
The result is that plots of E and J versus time are scaled versions of one another 
as shown below.  From Joule’s law, 

dP  =   
dv

E Ji  

 
Given that E and J are in phase and parallel, the power dissipated per volume in 
conductive material is simply the product of the magnitudes of E and J. 

dP  = E  J
dv

i  
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Displacement current density is the time rate of change of the electric flux density 
vector.  The flux density can be broken into two pieces, the first being oε E  which 
is present even in the absence of material being present (it’s there when material 
is present too) and the second being P which is the polarization vector 
associated with the separation of bound change. 
 
The displacement current is associated with the time rate of change of these two components. 

r o o r o o

D o

 =  =  =  + (  - 1)  =  + 

 =  =  + 
t t t

ε ε ε ε ε ε ε

ε∂ ∂ ∂
∂ ∂ ∂

D E E E E D E P
D E PJ

 

Note that both components of the displacement current have the same phase 
and direction (true at least for “low” frequencies—more on this below). 
 
This allows us to frame the discussion of power absorbed by a dielectric in terms 
of the behavior of bound change with respect to changes in electric field.   
 
Below, a sinusoidal variation in E is assumed and the corresponding bound charge 
separation is tracked with respect to time and correlated to the associated 
displacement current.  The power per unit volume absorbed by a dielectric is D  E Ji   
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If the material under consideration have both displacement and conduction 
currents presence there will be both energy storage and average power 
dissipation.  The net current will be between 0° and 90° out-of-phase with the 
electric field.  
 
This situation can also occur in dielectrics at high frequencies in which the time 
constants associated with the dynamics of the bound charge mass can no longer 
be neglected with respect to the time rate of change of the field. 
 
Displacement current at high-frequencies 

 
 
The result in either case, whether the material has both conduction and 
displacement current or whether the frequency is sufficiently high so that the 
displacement current is not in phase with the electric field, the result is that there 
is an average power lost from the field in the material.   
 
Another loss mechanism, to be treated later, is radiation loss which occurs 
anytime charge undergoes acceleration.  This loss can be significant if the 
frequency and geometry are such to lead to efficient radiation.  Radiation 
appears in the treatment of antennas.     
 
All these loss mechanisms lead to the same result as does the simple case of 
conductivity and an equivalent conductivity can be assigned to each. 
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Waves in lossy material  ☼ 
Taking Ampere and Faraday (with no charge or current sources) 

Note: no current sources DOES NOT mean there are no currents.  In conductive 
materials (σ ≠ 0), currents exist in response to an electric field in conductive 
material. 

 =  +  =  + 
t t

 = -
t
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Combining these equations 
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In the frequency domain 
2 2 2 2 2 2

2 2

 - j  +  =  + (1 - j )  =  + (1 - j )  = 0

 +   = 0            where  = 1 - j  is the complex permittitivty

σ σωμσ ω με ω με ω με
ωε ωε

σω με ε ε
ωε

∇ ∇ ∇

⎡ ⎤⎛ ⎞∇ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

E E E E E E E
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In the frequency domain, solutions are 

E = Ee± rE a γ� i� �  

where 2 =  = -  = j 1 - jγ γ
σγ ω μ ε ω ε μ
ωε

±a aγ� �  

( ) =  + j γα β aγ�  

Terminology 

complex propagation vector
complex propagation constant
attenuation constant (equal to zero for lossless materials)
phase constant

α
β

γ
γ�
�
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Details of solution 
The solution must satisfy the wave equation, 2 2+   = 0.ω με∇ E E� ��  

E = Ee± rE a γ� i� �  
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Each derivative pulls down ( ) i + j cosα β θ±  from the exponential.  The 

derivatives hear are second derivatives.  

( ) ( ) ( ){ }22 2 2
x y z + j cos  +  + j cos  +  + j cos    +    = 0α β θ α β θ α β θ ω με⎡ ⎤⎡± ⎤ ± ⎡± ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ E E� ��  

 

( ) ( ){ }2 2 2 2 2
x y z + j cos  + cos  + cos   +    = 0α β θ θ θ ω με⎡± ⎤⎣ ⎦ E E� ��  

 
The sum of the squares of the directional cosines must equal zero. 

( ) ( ){ }2 2 2 2 2
x y z

2 2 2 2

 + j cos  + cos  + cos   +    = 0

  +   = 0  = -

α β θ θ θ ω με
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→
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The result is the propagation constant is complex =  + j .γ α β�    The propagation 

vector also indicates direction of travel, ( )=  =  + j .γ γα βγ a aγ� �   

 
Propagation along + γa  

E = Ee± rE a γ� i� �  

( ) ( ) +
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i
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E = Ee rE a γ� i� �  
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Plane waves in lossy materials 
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In the time domain 
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EM waves in lossy material are exponentially decaying sinusoids  ☼ 

Consider an electromagnetic wave, pointing in ax direction, traveling in a lossy 
material in the az direction (assume φ = 0). 

x
- z =  Ee γE a �� �  

2 2-  = (  - j )

 = j (  - j )  =  + j  

σγ ω μ ε
ω
σγ ω μ ε α β
ω

�

�
 

 

 In the time domain, 

x
- z = Ee cos( t - z)α ω βE a  

 

 

The intrinsic impedance is complex (E and H are NOT in phase for lossy materials) 

j =  =  =  = e
 - j1 - j

ηθμ μ μη η
σσε εε
ωωε

⎛ ⎞
⎜ ⎟
⎝ ⎠

�
�

 

 
1  =   
ηβ ×H a E� �
�

  or use Faraday’s law 

  =   η β×E H a� ��   or use Ampere’s law 

 
2 1 = v = f  =  (general) v =  (lossless only)π ωβ λ
λ β ε μ
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Wave impedance in a lossy material 
What is the relation between E and H in the diagram shown?    ☼    
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Example: Wave propagation in lossy material  ☼ 
An electric field is given as x

- z =  100e γE a �� V/m is traveling through material with 

σ=0.1/Ωm, μr=1, εr=4.  The frequency is 2.45 GHz.  Find α and β and the dB/m 
attenuation in the material. 
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Power flow in a lossy material ☼ 
E points along ax, traveling in az direction.  Take phase of z = 0

t = 0
= 0°E . 
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 time-average Poynting vector 
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Special Cases ☼ 
High loss (good conductors) ~   σ ωε�  

( )

2 j
2

 = j (1 - j )    j -j  

j=  = j  = e
j

1 + j=   = 1 + j  =  + j
22
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Low loss (good dielectric) ~   σ ωε�  
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Good dielectrics (low loss) and good conductors (high loss)   ☼ 

Note that, in the expression for complex permittivity, the imaginary term within the 
parentheses gives the ratio between conduction current and displacement current. 

 = 1 - j σε ε
ωε

⎛ ⎞
⎜ ⎟
⎝ ⎠

�  

c c

d d

c

d

 =      = 

 =  =     J  = j  = j
t t

 =  =  = -j
jj

σ σ

ε ω ωε

σ σ σ
ωε ωεωε

→

∂ ∂
→

∂ ∂

J E J E
D EJ D E

J E
J E

� �

� � �

� �
� �

 

“good dielectrics”  are defined by  d c>>J J� �  

“good conductors” are defined by  c d>>J J� �  

 

Example: Good conductor?  Good dielectric? 
Find the propagation constant for f = 100Hz, σ = 10/Ωm, μr=1, εr=10.  Is the 
material a good conductor or a good dielectric?  Neither? 

 

 

 

 

 

Example: Copper 
At what frequency does Cu cease to be a good conductor?    
σ=5.8(107)/Ωm, μr=1, εr=1. 
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Skin depth and its effects in circuits  ☼ 
The distance a wave must travel into a good conductor for its amplitude to be 
reduced by a factor of e-1 is called skin depth, δ. 

Recall that, for a good conductor, conduction current is much greater than 
displacement current (σ >> ωε).              Jc = σE,       Jd = dD/dt = ε dE/dt 

2 2-  = (1 - j ) 

    + j  =  + j
2 2

σγ ω με
ωε

σωμ σωμγ α β≅

�

�

 

 

α is the attenuation constant and is the reciprocal of skin depth.   

Consider an electric wave pointing in the               
x-direction and traveling in the z-direction: 

 

 

 

 

Wave impedance 

 45°
1 - j - j

 =  =    = 
  

μ μ μ μωη
σ σε σε ε
ωε ωε

∠≅
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�
�

 

  

 

 

 

 

This implies that the magnetic field 
must lag the electric field  

     (E =  Hη� �� ) 
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Example: Skin effect  ☼ 
The distance in a good conductor that is required to reduce the amplitude of the 
field vectors by a factor of e-1 is called the skin depth, δ. 
 
Assuming copper: 

z-- z -1 -1
o o oE(z) = (z)  = E e  = E e  = E e  for z =  = α δ δ αE  

2 1 1 0.0661 =  =  =   
2 5.8f f

δ α
σμω π

− ≅1  

 
copper, non-magnetic                                 

μ = μo = 4π(10-7) H/m        σ = 5.8(107) S/m 
frequency (Hz) 60 Hz 1 KHz 1 MHz 1 GHz 

skin depth δ 8.5 mm 2.1 mm 66.1 μm  2.1 μm 
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Skin effect in circuits  ☼ 

Consider the important special case in which the skin depth is much 
smaller than the cross sectional dimensions of the conductor.   

In this case, it is convenient to suppose the current density is 
uniformly distributed over a skin depth. 

 VR  = 
I

Δ
Δ,  

 

 

 

 

 

 

 

 

The AC resistance of conductors is a function of frequency since 
the skin depth is a function of frequency. 

i) circular conductors 

 

 

 

ii) square conductors 

 

 

 

 

iii) stranded wire 
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Example:  Skin effect ☼ 
A voltage, vs(t) = 10 cos (2πft) V is applied to a 100 Ω load and a solid copper 
conductor as shown.  The radius of the conductors is 2 mm and their length is 5 cm.   

a)   What power is dissipated in the copper conductor at 60 Hz?   

 
 

b) What is the resistance of the conductors at 4 GHz?  What power is 
dissipated in the copper conductors at 4 GHz?   

 
 
 
 
 
 
A voltage, vs(t) = 10 cos (2πft) V is applied to a similar conductor-load, this time 
the conductors consist of a 10 μm copper coating with the interior of the 
conductors being a good insulator like Teflon. 

a) What is the resistance of the Cu-coated conductors at 60 Hz?  
What power is dissipated by the Cu-coated conductors at 60 Hz?   

 

 
b) What is the resistance of the Cu-coated conductors at 4 GHz?  

What power is dissipated by the Cu-coated conductors at 4 GHz?   
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Poynting’s theorem  ☼ 

( )

( )

   =   -
t

   =    + 
t

∂⎛ ⎞∇ × ⎜ ⎟∂⎝ ⎠
∂⎛ ⎞∇ × ⎜ ⎟∂⎝ ⎠

BH E H

DE H E J

i i

i i
 

Using this and the vector identity 
( ) ( ) ( )   =    -   ∇ × ∇ × ∇ ×E H H E E Hi i i  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

John Henry Poynting 
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Poynting’s theorem ☼ 
Looking at the integral form of Poynting’s theorem, it is readily seen that the 
theorem is an expression of conservation of energy IF Poynting’s vector is power 
flux density in W/m2.   

 

 

 

 

 

Conservation of energy is the justification for the interpretation of  = ×S E H  as 
power flux density. 

Example: units 
What are the units of a)    b)    c) ⋅ ⋅E D H B S ? 

 
 
 
Example:  Calculations of power flow 
An electric vector, pointing in the y-direction, travels in the z-direction. At z=0, the 
electric vector has an amplitude of 2 V/m.  f=10 MHz with material properties 
μr=1, εr=4, σ=10-5/Ωm.   

Calculate the terms in the integral form of Poynting’s theorem for the cube          
0 < x < 2 m, 0 < y < 2 m, 0 < z < 2 m. 
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Example: Power density  ☼ 
Calculate Poynting’s vector and the time-averaged Poynting’s vector for the 
plane wave below, traveling in air.     

x

-j y2 =  2e  V/m
π

E a�  
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Example:  wave propagation in lossy material ☼ 
An EM wave travels along az in nonmagnetic material with a complex permittivity 
@ ω = 1010 r/s of o o

-j36.9° = (20 - j15) = 25 eε ε ε� .   It is known that E� points in the ax 

direction and that 2zz=0
W = 62.9  

m
S a . 

i) a) What is the material’s conductivity?  b) Can the material be classified 
as a good conductor or as a good dielectric?   

 

 

 

 

 

 

 

 

 

 

 

ii) What is the material’s complex propagation constant?   (give in rectangular form)   

 

 

 

 

 

 

 

 

iii) What is the material’s intrinsic impedance?   (give in polar form)   
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(Example: cont.) An EM wave travels along az in nonmagnetic material with a 
complex permittivity @ ω = 1010 r/s of o o

-j36.9° = (20 - j15) = 25 eε ε ε� .   It is known 

that E� points in the ax direction and that 2zz=0
W = 62.9  

m
S a . 

iv) Give the electric and magnetic vectors in the frequency domain.  
(assume the phase of E� is 0° at z=0).   

 

 

 

 

 

 

 

v) Give the time-domain electric and magnetic vectors.    

 

 

 

 

 

vi) Find the Poynting’s vector, S, and the time-averaged Poynting vector, S .   

 

 

 

 

 

 

vii) a) What is the wave’s wavelength?  b) What is the wave’s phase velocity?      
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EM waves incident on boundaries (normal incidence)   ☼ 
How are EM waves reflected and transmitted when a plane dielectric boundary is 
encountered?  Consider the situation below: 

 

Define a transmission coefficient, T, and reflection coefficient, Γ. 

t r

i i

E ET =          = 
E E

Γ  

Let 1
i x i

-j z = E e βE a�  

Boundary conditions:    1tan 2tan 1tan 2tanz=0 z=0 z=0 z=0E = E               H = H  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

341 lecture notes 
 

25 

Example: transmission and reflection ☼ 
Find the reflection and transmission coefficients for a wave traveling in a printed 
circuit board made from FR-4 (most common PCB material—fiberglass epoxy 
base) into air. 
 

FR-4    εr=4.4,  μr=1 
air     εr=1,  μr=1 
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Polarization  ☼ 
Polarization refers to the path traced by the electric vector in a traveling 
electromagnetic wave.  Assume a wave in traveling in the +az direction and take 
the point-of-view seen in front of the oncoming EM wave.  For a given value of z, 
what path is traced by the electric vector in the x-y plan as time advances?   
 
In general, a wave traveling in the az direction can have an x-component and a y-
component.   The resultant vector traces an ellipse—elliptical polarization—in 
the x-y plan as it travels, the shape of which depends on Ex, Ey, φx, and φy. 
 
 

( ) ( )x x x y y y = E cos t - z +  + E cos t - z + ω β φ ω β φE a a  

 

Linear polarization is a special case 
( )x x x = E cos t - z + ω β φE a  

 

( )x x x = E cos t - z + ω β φE a

 

( ) ( )x x y y= E cos t - z  + E cos t - zω β ω βE a a

 
 
 
When Ex = Ey and φx and φy differ by ±90°, the result 
is circular polarization. 

 

 
For circular and elliptical polarization, the sense of the rotation is referred to as 
left-handed or right-handed, depending on which hand, if the fingers follow the 
rotation of E, the thumb is in the direction of propagation. 
 
Examples   ☼ 
What is the polarization for ( ) ( )x y = 2 cos t - z + 45°  - 10 cos t - z - 90°ω β ω βE a a ?  (LHEP) 

What is the polarization for ( ) ( )x y = 2 cos t - z + 45°  + 2 cos t - z - 45°ω β ω βE a a ?  (RHCP) 

What is the polarization for ( ) ( )x y = 3 cos t - z + 45°  +  cos t - z + 45°ω β ω βE a a ?  (LP, τ = 18.43°) 
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EM waves incident on boundaries (oblique incidence)  ☼ 
Now consider an EM wave, traveling in region 1, which encounters a second 
region at an angle other than normal.  In this case, we must consider two types of 
polarization.   

 1. Perpendicular polarization:  ⊥E  to plane of incidence (POI). 

 2. Parallel polarization:   E & to POI 
 
      ⊥E  POI          E &  to POI 

 
 
Definitions   
POI – plane formed by propagation vector, β, and the vector normal to the 
boundary between regions 1 and 2. 
 
Polarization:  in general, any non-random orientation of an electric and magnetic 
field.  In particular, polarization more usually describes the path the electric 
vector takes, in planes of constant phase as the wave travels.   
 

Note:  We’re considering only linear polarization, where the electric vector 
points in one direction.  It reaches its maximum positive, grows smaller, 
becomes zero then negative, becomes maximum negative, grows smaller, 
becomes zero, etc.  
 
That is the vector remains on a straight line—thus, linear polarization.   
 
Any TEM wave can be expressed in terms of linearly polarized waves. 
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Refection and transmission at dielectric boundaries ( ⊥E  POI) ☼ 

 

1st, give expressions for the electric and magnetic vectors.   

Then, to find reflection and transmission coefficients, require tangential H and E 
to be continuous at the boundary (z = 0).   
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Refection and transmission at dielectric boundaries ( ⊥E  POI) 
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Refection and transmission at dielectric boundaries (E & POI)  ☼ 
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Example: Reflection and transmission  ☼ 
A uniform plane wave, in air, impinges on a dielectric material at θi = 45°.  The 
transmitted wave propagates with θt = 30°.  The frequency is 300 MHz and the 
electric vector is perpendicular to the plane of incidence. 

 i) Find ε2 in terms of ε0 (assume μ1=μ2=μo) 

 ii) Find the reflection coefficient, Γ. 

 iii) Find the transmission coefficient, T. 

 iv) Give expressions for the incident and E H� � -fields, the     

  reflected  and E H� �  fields, and the transmitted and E H� � -fields. 
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EM waves normally incident on good conductors  ☼ 

Consider EM waves encountering a conducting material 

 
2 1 2

2 1 2 1

 - 2 =                    T = 
 +  + 

η η η
η η η η

Γ
� � ���
� � � �
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Example:  Reflection and transmission from a metal  ☼ 
A 1-MHz plane wave, in air is incident on a copper sheet.  The amplitude of the 
incident E-field is 100 V/m.  Find Γ, T, δ, and the |E| and |H| fields at a distance of 
δ into the copper. 
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Standing Waves  ☼ 
Consider normal incidence.  In steady-state, the incident and reflected waves interact 
to produce, in region 1, a traveling wave and a standing wave.   

 
 

1 i r i i

1 i i

1 i i i i

-j -j z2

-j -jj-j z j z2 2

-j j -j -j-j z j z -j z -j z2 2 2 2

 =  +             choose reference phase  = e e

 = e e  + e e e

 = e e + e e  + e e  - e e 

ϕ
β

ϕ ϕ
ϕβ β

ϕ ϕ ϕ ϕ
β β β β

Γ

Γ Γ
Γ

Γ Γ Γ Γ

Γ

Γ Γ Γ

E E E E E

E E E

E E E E E

� � � �

�

�
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Standing Wave Ratio (SWR)  ☼ 

( )

max

min

E 1 + SWR =  = 
E 1 - 

SWR - 1 =                = 
SWR + 1

Γ
Γ

Γ Γ Γ�

 

 
The SWR ratio can readily be measured—so too = Γ Γ� . 

 
For no reflection, SWR=1.   As more of the incident wave is reflected, the SWR 
ratio grows. 
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Capacitor  ☼ 

 
If a DC voltage, V, is placed across the two plates shown, the electrostatic field is  

x
V = -
d

E a  

The ratio of  the charge stored on the plates, Q, and V is the capacitance of the 
structure. 

dc
QC  = 
V

 

In this model, no current flows (I = 0) from the DC voltage source.        Since I = 0 

and dV  = 0
dt

, there is no reason that the parameter, Cdc, should be suspected of 

having any particular relation to the capacitance from lumped element circuit 
theory, defined by 

ac
dv(t)i(t) = C

dt
 

 
 Are Cdc and Cac really the same?   

 If so, are there limits to the validity?  For instance, does the capacitor 
operate at high frequencies as it does at low frequencies?   

 What are low frequencies?   

 What are high frequencies?   

 If there are changes at high frequencies, what are they? 
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Inductor  ☼ 

 

If the plates are shorted, and a DC current, I, is input into as shown the 
magnetostatic field is 

y
I = -
w

H a  

The ratio of the magnetic flux, ψm, to the current, I is the inductance of the one-
turn structure. 

m
dcL  = 

I
ψ  

In this model, no voltage exists (V = 0) across the PEC plates due to the DC 

current.   Since V = 0 and dI  = 0
dt

, there is no reason that the parameter, Ldc, 

should be suspected of having any particular relation to the inductance from 
lumped element circuit theory, defined by 

ac
di(t)v(t) = L
dt

 

 
 Are Ldc and Lac really the same?   

 If so, are there limits to the validity?  For instance, does the inductor 
operate at high frequencies as it does at low frequencies?   

 What are low frequencies?   

 What are high frequencies?   

 If there are changes at high frequencies, what are they? 
 
 
 
 



 

341 lecture notes 
 

39 

Maxwell’s equations 
Gauss’ law         v= ρ∇ ⋅D  

Conservation of magnetic flux     = 0∇ ⋅B  

Ampere’s law        x  =  + 
t

∂
∇

∂
DH J  

Faraday’s law         x  = -
t

∂
∇

∂
BE  

 

Constituent relations       J = σE   

           D = εE     

           B = μH 

 
In EM Fields (340) and in the beginning of EM Waves (341), wave propagation 
effects were assumed to be negligible.  For example, when discussing the 
magnetic field due to a changing current, it was assumed the field appears 
identically everywhere at the same instant.  This cannot be so.  EM waves travel 
fast, but their speed is finite. 
 
For the past couple of weeks in EM waves, we’ve been discussing 
electromagnetic waves.  When does the transition occur?  When must one begin 
accounting for wave phenomena?  What are the effects?   
 
These important questions are answered by quasi-statics, which is the study of 
the nether region between statics and waves. 
 
Quasi-Statics  ☼ 
Maxwell’s equations can be expanded in a power series in ω (about ω = 0).  The 
first two terms (the static solution, and the 1st-order term) are often referred to as 
the quasi-static solution. 
 
There are several motivations for developing the quasi-static technique:       
 
 1)  finding the solution to Maxwell’s equations can be a daunting task,  
  and, using the techniques that have been developed for the quasi-  
  static field, we can use solutions from statics to approximate    
  the solution for the dynamic situations,   
 
 2)  what is meant by “low frequency” can be defined.    
 
 3)  the emerging effects seen when leaving the “low frequency” regime  
  can be found. 
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Power series expansion of Maxwell’s equations ☼ 
 

2 n n
n

nn=0
n= 0 n = 0=0 =0 =0

 =  +  +  +  =  = 
2! n!ω

ω ω ω

ω ωω ω
ω ω ω

∞ ∞∂ ∂ ∂
∂ ∂ ∂∑ ∑B B BB B B

2

2 "  

 

Faraday’s law,    = -    = -j
t

ω∂
∇ × → ∇ ×

∂
BE E B� �  

 
Looking at the two sides of the equation for Faraday’s law, consider them in the 
form of power series in ω.  Since each power of ω is independent, once can write 
a series of equations, one for each power of ω. 

= 0 = 0

n n
n n

n n 
   = -jω ω ω

∞ ∞

∇ × ∑ ∑E B� �  

 
Since each power of ω is independent, equations for each power must hold.  This 
gives rise sets of equations in the zeroth-order, first-order, etc. 
 

In the frequency-domain, 

( )0
n n-1

n n-1   = -j for n = 0,    = 0ω ωω∇ × ∇ ×E B E� � �  

In the time-domain, ( )n-1
n 0   = - for n = 0,    = 0

t
∂

∇ × ∇ ×
∂
BE E  

 

zeroth-order 

coefficients of ω0 

0

0 0

0 0

0

0

 = 0
 = 
 = 
 = 0
 = 0

ρ

∇ ×
∇ ×

∇ ⋅

∇ ⋅
∇ ⋅

E
H J

D
B
J

 

 

first-order 

coefficients of ω 

0
1

0
1 1

1 1

1

0
1

 = -
t

 =  + 
t

 = 
 = 0

 = -
t

ρ

ρ

∂
∇ ×

∂
∂

∇ ×
∂

∇ ⋅
∇ ⋅

∂
∇ ⋅

∂

BE

DH J

D
B

J

 

second-order 

coefficients of ω2 

1
2

1
2 2

2 2

2

1
2

 = -
t

 =  + 
t

 = 
 = 0

 = -
t

ρ

ρ

∂
∇ ×

∂
∂

∇ ×
∂

∇ ⋅
∇ ⋅

∂
∇ ⋅

∂

BE

DH J

D
B

J

 

boundary conditions 
( )
( )

( )
( )

n 1 2 m

n 2 2 mm

n 2 2 smm

n 2 2 m

 -  = 0

 -  = 

 -  = 

 -  = 0

ρ

×

×

⋅

⋅

a E E
a H H K
a D D
a B B
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Capacitor: quasi-static solution  ☼ 

 parallel plate model with distributed source along y at z = -l  ∂ ∂
∂ ∂

 =  = 0
x y
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0th-order fields   ☼ 

0y 0y0z 0x 0z 0x
0 x y z

0y0x 0z
0 o 0 o 0v

E EE E E E =  -  +  -  +  -  = 0
y z z x x y

EE E   =    =  +  +  = 
x y z

ε ε ρ

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞∇ × ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂ ∂
∇ ∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

E a a a

D Ei i

 

 
 
 
 
 
 
 
 
 

0y 0y0z 0x 0z 0x
0 x y z o

0y0x 0z
0 o 0 o

H HH H H H =  -  +  -  +  -  = 
y z z x x y

HH H   =    =  +  +  = 0
x y z

μ μ

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞∇ × ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂ ∂
∇ ∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

H a a a J

B Hi i
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1st-order fields  ☼ 

1y 1y 01z 1x 1z 1x
1 x y z o

1y1x 1z
1 o 1 o 1v

E EE E E E =  -  +  -  +  -  = -
y z z x x y t

EE E   =    =  +  +  = 
x y z

μ

ε ε ρ

∂ ∂⎛ ⎞ ⎛ ⎞ ∂∂ ∂ ∂ ∂⎛ ⎞∇ × ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂ ∂
∇ ∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

HE a a a

D Ei i

 
 
 
 
 

ε

μ μ

∂ ∂⎛ ⎞ ⎛ ⎞ ∂∂ ∂ ∂ ∂⎛ ⎞∇ × ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂ ∂
∇ ∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

EH a a a J

B H

1y 1y 01z 1x 1z 1x
1 x y z 1 o

1y1x 1z
1 o 1 o

H HH H H H =  -  +  -  +  -  =  + 
y z z x x y t

HH H   =    =  +  +  = 0
x y z

i i
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2nd-order fields  ☼ 
 

ε

μ μ

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞∇ × ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂ ∂
∇ ∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

EH a a a J

B H

2y 2y2z 2x 2z 2x 1
2 x y z 2 o

2y2x 2z
2 o 2 o

H HH H H H =  -  +  -  +  -  =  + 
y z z x x y t

HH H   =    =  +  +  = 0
x y z

i i

 

 
 
 
 
 

μ

ε ε ρ

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞∇ × ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂ ∂
∇ ∇ ⎜ ⎟∂ ∂ ∂⎝ ⎠

HE a a a

D E

2y 2y2z 2x 2z 2x 1
2 x y z o

2y2x 2z
2 o 2 o 2v

E EE E E E =  -  +  -  +  -  = -
y z z x x y t

EE E   =    =  +  +  = 
x y z

i i
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capacitor: quasi-static solution and 2nd-order corrections  ☼ 
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Transmission lines  ☼ 
Transmission lines are a special case of solutions to Maxwell’s equations when 
the properties of the physical system do not change in one direction (typically 
taken to be the z-direction). 
 

 
 
Maxwell in the frequency domain (current and charge-free) 

= -j

 = j

 = 0

 = 0

ω

ω

∇ ×

∇ ×

∇ ⋅

∇ ⋅

E B
H D

D
B

� �

� �

�

�

 

 
 
 
 
 
 

Solutions are solutions to the Helmholtz wave equation 

( )2 2 +  = 0ω με
⎧ ⎫⎪ ⎪∇ ⎨ ⎬
⎪ ⎪⎩ ⎭

E
H

�

�  

 
Plane waves are solutions. 

j z

j z

(x,y,z, ) (x,y, )e
 = 

(x,y,z, ) (x,y, )e

β

β

ω ω

ω ω

±

±

⎫ ⎧⎪ ⎪
⎬ ⎨
⎪ ⎪⎭ ⎩

E E
H H

� �

� �  

 

( )
2

2 2 2 2 2
t t 2 +  -  = 0          where  =   - 

z
ω με β

⎧ ⎫ ∂⎪ ⎪∇ ∇ ∇⎨ ⎬ ∂⎪ ⎪⎩ ⎭

E
H

�

�  

 
TEM solutions exist in transmission lines (coaxial lines, stripline, twin-lead) for which 
the az component of E and H are zero.   The microstrip transmission line carries waves 
that are TEM to a good approximation.    
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TEM waves  ☼ 
The fields are of the form 

t t

t t

j z

j z

(x,y,z, ) (x,y, )e
 = 

(x,y,z, ) (x,y, )e

β

β

ω ω

ω ω

±

±

⎫ ⎧⎪ ⎪
⎬ ⎨
⎪ ⎪⎭ ⎩

E E
H H

� �

� �  

 
The key is that the Helmholtz equation splits into two pieces 
 

( )

( )

2
t2 2 2 2 2

t t 2
t

2
t t t2 2
2
t t t

 +  -  = 0          where  =   - 
z

 = 0                and               - = 0

ω με β

ω με β

⎧ ⎫ ∂⎪ ⎪∇ ∇ ∇⎨ ⎬ ∂⎪ ⎪⎩ ⎭

⎫ ⎧ ⎫∇ ⎪ ⎪ ⎪
⎬ ⎨ ⎬

∇ ⎪ ⎪ ⎪⎭ ⎩ ⎭

E
H

E E
H H

�

�

� �

� �

 

 
The result is that the form of the waves in transverse directions are solutions are 
static solutions ( t t and E H� � are solutions to Laplace). 
 
Example 1: coaxial lines  ☼ 
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Example 1: coaxial lines (continued) 
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Voltage & Current Waves: Telegrapher’s equations  ☼ 
 

 
 
 
 From Faraday 
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Voltage & Current Waves: Telegrapher’s equations  ☼ 
 

 
 
 
 From charge conservation 
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Coaxial lines:  Source for table is E. Kuester, U. of Colorado (2000) 
Type Graphic fmax   Notes 
Phone 
jacks 

 

100 KHz Phone jacks and plugs are also known as TS (Tip-Sleeve) for two-
conductor connections or TRS (Tip-Ring-Sleeve) for three-conductor 
connections. They are widely used with musical instruments and audio 
equipment. These are really only suitable for audio frequencies. 

RCA jacks 

 
 

10 MHz A round, press-on connector commonly used for consumer-grade audio 
and composite video connections.  The jacks are sometimes color-coded:  
red (audio-right), black or white (audio-Left) and yellow (composite video). 
Generally not a constant characteristic impedance connector. 

F (video) 

 

250 MHz 
to 1 GHz 

 

The “F” series connectors are primarily utilized in television cable and 
antenna applications. Normally these are used at 75 ohm characteristic 
impedance. 3/8-32 coupling thread is standard, but  push-on designs are 
also available. 

BNC 

 

2 GHz or 
higher 

Bayonet Neil-Concelman or British Navy Connector. The BNC is used in 
video and RF applications to 2 GHz. Above 4 GHz, the slots may radiate 
signals, so the connector is usable, but not necessarily mechanically 
stable up to about 10 GHz. Both 50 ohm and 75 ohm versions are 
available. 

Type N 

 

12 GHz 
or higher 

 
The N-type connector was designed by Paul Neill of Bell Laboratories, 
and offers high performance RF performance with a constant impedance.  
The connector has a threaded coupling interface to ensure that it mates 
correctly to provide the optimum performance.  Both 50 and 75 ohm 
versions are available, the 50 ohm version being  by far the most widely 
used. T 
 
The connector able to withstand relatively high powers when compared to 
the BNC or TNC connectors. The standard versions are specified for 
operation up to 11 GHz, although precision versions are available for 
operation to 18GHz. 
 
Type N uses an internal gasket to seal out the environment, and is hand 
tightened. There is an air gap between center and outer conductor.  A 75 
ohm version, with a reduced center pin is available and is used by the 
cable-TV industry. 

SMA,      
3.5 mm, or 
APC-3.5 

 

12 GHz 
or higher 

The SMA (Subminiature A) connector is intended for use on semi-rigid 
cables and in components which are connected infrequently. It takes the 
cable dielectric directly to the interface without air gaps. A few hundred 
interconnect cycles are possible if performed carefully. Care should be 
taken to join connectors straight-on.  

APC-7 or 
7 mm 

 

18 GHz  The APC-7 (Amphenol Precision Connector - 7 mm) offers the lowest 
reflection coefficient and most repeatable measurement of all 18 GHz 
connectors. These connectors are designed to perform repeatably for 
thousands of interconnect cycles as long as the mating surfaces are kept 
clean.  
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2.4mm 

 

50 GHz 
and 
higher 

This design eliminates the fragility of the SMA and 2.92-mm connectors 
by increasing the outer wall thickness and strengthening the female 
fingers. The inside of the outer conductor is 2.4 mm in diameter, and the 
outside is 4.7 mm. Because they are not mechanically compatible with 
SMA, 3.5-mm and 2.92-mm, precision adapters are required in order to 
mate to those types.  

The 2.4-mm product is offered in three quality grades; general purpose, 
instrument, and metrology. General purpose grade is intended for 
economy use on components, cables and microstrip, where limited 
connections and low repeatability is acceptable. The higher grades are 
appropriate for their respective applications. 

 
 
 
Microstrip:  Widely used in PCBs. 
Resource:  http://qucs.sourceforge.net/tech/node44.html 
 
 
 
 
 
 
Stripline:  Widely used in PCBs.  Stripline provides some self-
shielding. 
Resource:  
http://obiwan.cs.ndsu.nodak.edu/~ekhan/mes/programs/strip.htm

 
 
 

 
Twin lead:  Twin lead characteristic impedance is commonly 300 Ω.  
Resource:  http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=util_inductance_wire_2 
 
 
 

 
 
All kinds of applets on transmission lines, waves etc. 
http://www.educypedia.be/electronics/javatransmissinlines.htm 
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Voltage & Current Waves: Telegrapher’s equations  ☼ 
 

 
 
 

 
 

Voltage and current are related via the Telegrapher’s equations 
 

( )
+ -

2

2

2
2 + - + -

2

2

2

j -j z j j z -j z j z

V I = -j  I                     = -j  V
z z

V I = -j  = -j -j V
z z
V  +  V = 0                (V = V e e  +  V e e = V e  +  V e )

z

I V = -j  = -j -j
z z

ϕ β ϕ β β β

ω ω

ω ω ω

ω

ω ω

∂ ∂
∂ ∂

∂ ∂
∂ ∂
∂
∂

∂ ∂
∂ ∂

� �� �

� � �

� � � �

� �

L C

L L C

LC

C C ( )
2 + -

2
2

o o

-j z j z

 I

I V V +  I = 0                ( I = e  -  e )
z Z Z

β β

ω

ω∂
∂

�

� � �� �

L

LC

 
 

These are both wave equations with  = β ω LC   
Although technically NOT a general result, for transmission lines this 
formula can typically be used since most transmission lines, if practical, 
ARE low-loss.  The low-loss case gives this result. 

. 
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Consider a voltage wave traveling in the +z direction and determine the 
relation between voltage and current.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
This relation defines the characteristic impedance. 
http://obiwan.cs.ndsu.nodak.edu/~ekhan/mes/programs/strip.htm 
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Lossy Transmission Lines  ☼ 
Real transmission lines are lossy.  First, there is loss due to the current 
which is modeled as a series resistance/meter.   
 
For coaxial lines, this resistance can be found using techniques already 
developed. 
 

inner outer

1 1 1 =  + 
P Pσδ

⎛ ⎞
⎜ ⎟
⎝ ⎠

R  

 
The other loss is associated with the voltage between conductors and is due 
to dielectric loss. 
 
This loss is modeled as a conductance/meter. 
 

 
circuit model for lossy line 

 
Physical basis for G 
 Review of mechanism for dielectric current 
 
 
 
 
 

 loss due to radiation 
 
 
 
 
 
 loss due to lattice coupling 
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Transmission line equations   ☼ 

( ) ( )

( ) ( )( )
2

2

V I = -  + j I                     = -  + j V
z z
V I = -  + j  =  + j  + j V

z z

ω ω

ω ω ω

∂ ∂
∂ ∂
∂ ∂
∂ ∂

� �� �

� � �

R L G C

R L R L G C
 

 
Defining impedance/meter and admittance/meter. 

 =  + j                     =  + jω ω� �Z R L Y G C  
 
The following form is obtained. 

2

2

C

V  =   V
z

 + j =                           Z  =  = 
 + j

ωγ
ω

∂
∂

� �

��� �� �

ZY

Z R LZY
G CY

 

 
Low-loss ( ) <<                << ω ωR L G C  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



 

341 lecture notes 
 

57 

Reflected Waves  ☼ 
 

 
 

Γ
r t

i i
z=0 z=0

V V =                 T = 
V V

 

 
The “boundary conditions” are KVL and KCL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Γ c2 c1 c2

c2 c1 c2 c1

Z  -  Z 2Z =                           T = 
Z  +  Z Z  +  Z
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Lumped-element loads  ☼ 
The reflection coefficient would be unchanged if, instead of a second medium 
with characteristic impedance Zc2, there were a lumped element with this same 
impedance, ZL = Zc2. 
 
Matched load (ZL = Zc1) 

 Γ = 0, no reflections. 
 
 
 
 
 
 
Short circuit (ZL = 0) 

Γ = -1, reflected voltage cancels incident voltage (V1 = 0) 
 
 
 
 
 
 
 
Open circuit (ZL = ∞) 

Γ = 1, total voltage is twice incident voltage   
(Or, why you don’t want to be at the end of the power line in an area 
with frequent lightning storms) 

 
 
 
 
 
 
 
Γ for a passive load is a complex number with a magnitude less than or 
equal to one.  
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Transient waves on lossy lines  ☼ 
When loss must be taken into account, high frequencies see a different 
environment due to the frequency dependence of the loss mechanism (skin 
effect and dielectric loss).  This complicates the analysis for the transient 
solution.   

The most important things here are its qualitative characteristics and the 
physical reasons for these characteristics. 
 
Dispersion and attenuation  ☼ 
In general, α and vp are functions of ω in a lossy transmission line.   
 
It is true that, in the low-loss approximation, vp is not a function of ω, but, strictly 
speaking, vp is a function of ω, even in the low-loss case (it’s a second-order 
effect in the low-loss case). 
 
 
 
 
 
Dispersion occurs when vp is a function of ω.  If one looks sufficiently close, vp  is 
almost always dependent on ω.  Aside from effects due to loss, C and L vary with 
frequency, or, more fundamentally, ε and μ vary with frequency. 
 
For transmission lines, α typically increases with ω (Rac increases as ω 
increases) 
 
From Fourier analysis, the harmonic functions form a complete basis set, and we 
can use superposition to construct any waveform.  That is, we can expand any 
signal in terms of harmonic functions. 
Looking at the problem in this light, there are two things going one 
simultaneously:  1st, the time-delay suffered by components varies with their 
frequency, and 2nd, the high-frequency components of waveforms suffer greater 
attenuation as they propagate.   
 
The net result is that waves (any wave that is not a pure sinusoid) changes 
shape as it propagates.  Sharp corners become rounded, rise times become 
longer, fall times lengthen.  
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Transient Waves on lossless lines  ☼ 
With no loss, all harmonics experience the same propagation environment.   
 
The result is that waves retain their shape as they propagate. 
 

 
 

To track the transient response in this case, two reflection coefficients can be 
defined—Γs (at the source end), and ΓL (at the load end). 
 

There is also a time delay associated with propagation, d
p

dt  = v . 
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Bounce diagrams  ☼ 
This process is often analyzed using bounce diagrams. 
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Example 
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Transient Waves on lossless lines  ☼ 
How are voltage waves reflected when transmission lines are terminated in 
reactive elements? 
 

 
 
For this case, the capacitor, the reflection will vary with time.  Initially when the 
positively-traveling voltage wave encounters the capacitance, it will be 
uncharged.   
 
At that instant, the capacitor will act as a short circuit, so will require the sum of 
the incident wave and reflected wave—at that instant—to be zero.  For t=td, 
Γcap=-1. 
 
For long times, the capacitor will be fully charged and so act as an open circuit.  
For large t, Γcap=1. 
 
How does the reflection coefficient move between these two points?   
 

Answer:   It moves between them as a first-order circuit with a time   
   constant τ = ZcC. 
  

Analysis 
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What would the situation if the line were terminated with an inductance? 
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Example  ☼ 
Find the reflected wave, in the time-domain, at z=d. 
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Time-domain reflectometry  ☼ 
TDR is a widely-used experimental probe to investigate material properties and 
transmission line discontinuities.   
 
Although workers in the field have developed many specialized techniques, the 
basic idea is simple.  The standard experiment in TDR for transmission lines is to 
inject a pulse and observe the reflected wave.  For meaningful location data to be 
obtained with TDR, time must be measured very accurately. 
 
The available information includes 1) location of discontinuity, and 2) the 
character of the discontinuity. 

 
Example 
A 10 volt pulse is introduced into a 75Ω transmission line having vp= 108 m/s.   
11.3 μs later, a minus two (-2) volt pulse is observed at the TDR unit.   What 
information is available about the discontinuity and its location? 
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Steady-State Waves   ☼ 
 

 
 

The source introduces a positively traveling wave of amplitude and phase 0V� .   
The frequency-domain components (sinusoidal steady-state) are: 

+
0 0

-j zV (z) = V e β� �  
+

1 0 L s
-j z -j2 dV (z) = V e eβ βΓ Γ� � � �  

#  

( )

( ) ( )

+
n 0 L s

+ + 0
n 0 L s 0 L s

n=0 n=0 n=0 L s

n-j z -j2 d

-j zn n-j z -j2 d -j z -j2 d
-j2 d

V (z) = V e e

V eV (z) = V V e e  = V e e  = 
1 - e

β β

β
β β β β

β

∞ ∞ ∞

Γ Γ

= Γ Γ Γ Γ
Γ Γ∑ ∑ ∑

� � � �

�� � � �� � � �
� �

 

+ -j z +0

L s

-j z
-j2 d

VV (z) = e  = V e
1 - e

β β
βΓ Γ

�� �
� �  

 
Similarly, it can be shown that 
 

- +
L

-j2 d j zV (z) =  V e eβ βΓ� � �  
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The ratio between the positively-going voltage wave to the negatively-going 
voltage wave, as a function of z is 

-
L in L

j2 d j2 z -j2 d(z) = e e              = (z=0) = eβ β βΓ Γ Γ Γ Γ� � � � �  

 
 
 
 
What does this mean?   

It means the ratio of the voltage going in the +z direction to that going in the –z 
direction is constant in magnitude but that their relative phases vary as z varies 
(we’re neglecting loss here).  This should not be surprising—after all, the two 
voltage waves are traveling in opposite directions. 
 
 
 
 
 
 
 
 

( )

( )

( )
( )

+ - +
L

+
+ -

L
c

+ j z
L L

c+

L
c

-j z -j2 d j z

-j z -j2 d j z

-j z -j2 d -j z -j2 d j z

-j z -j2 d j z

V(z) = V (z) + V (z) = V e  + e e

VI(z) = I (z) - I (z) = e  - e e
Z

V e  + e e e  + e eV(z)Z(z) =  =  = Z
eI(z) V e  - e e

Z

β

β β β

β β β

β β β β β

β β β

Γ

Γ

Γ Γ

Γ

� � � � �

�� � � �

� �� ��
� �

�
L

c
L L

L
in c

L

-j2 z -j2 d

-j z -j2 d j z -j2 z -j2 d

-j2 d

-j2 d

e  + e = Z
 - e e e  - e

1 + eZ  = Z(z=0) = Z
1 - e

β β

β β β β β

β

β

Γ
Γ Γ

Γ
Γ

�
� �

�� �
�
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What are some consequences for this expression for inZ� ? 

It means, for instance, that a short circuit ( L = -1Γ� ) can look like a open 

circuit when -j2 d j2 ze e  = -1β β , that is when ( ) ( )( )2 z-d = 2 2 z-d =-β π λ π . 

The input impedance for a transmission line of length λ/4, when terminated 
with a short circuit looks like an open circuit! 

The input impedance for a transmission line of length λ/2, when terminated 
with a short circuit looks like a short circuit! 

 
Similarly, 

The input impedance for a transmission line of length λ/4, when terminated 
with an open circuit looks like a short circuit! 

The input impedance for a transmission line of length λ/2, when terminated 
with an open circuit looks like an open circuit! 

 
VSWR 
 Just as with fields, there are standing waves present anytime there are 
 reflections.  The voltage standing wave ratio (VSWR). 

+ + - +
L

max

min

L

L

-j z -j2 d j zV (z) =  V e               V (z) =  V e e
VVSWR = 
V

1 + 
VSRW = 

1 - 

β β βΓ

Γ

Γ

� � � � �

�

�

 

Voltage minima, spaced λ/2 apart, become more pronounced and  narrower as 
| LΓ� | grows. (see page 52 in text). 
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Steady-State Voltages and Currents  ☼ 
 

 
 
Find L in in L in  in L  L in L, , d, Z , Z , , , V , I , V , I , P , Pβ λ Γ Γ� � � � � �� �  
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Transmission Line Examples  ☼ 
A 1 volt drop occurs across a load of LZ� = 130 + j80 Ω which is connected to a 

12.7 m length of lossless transmission line.  The line has ZC = 53 Ω and   vP = 
250 m/μs; the signal generator has a Thevénin resistance RS = 100 Ω and 
operates at 250 MHz.  Calculate 

 i) the power delivered to the load. 

 ii) the transmission line input reflection coefficient. 

 iii) the transmission line input impedance. 

 iv) the transmission line input voltage. 

 v) the open-circuit voltage of the generator. 

vi) the power delivered by the generator to the input of the transmission 
line. 
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Example  ☼ 
i) Calculate the input impedance of an open-circuited transmission line of λ/8 

length. 
 
 
 
 
 
 
 
ii) Calculate the input impedance of a short-circuited transmission line of λ/8 

length. 
 
 
 
 
 
 

 
iii) Calculate the input impedance of a 3λ/8 line with ZC=50 Ω which is 

terminated by a load of LZ� =100+j150 Ω. 
 

 
 
 
 
 
 

iv) A 50 Ω transmission line of length 0.225 λ has an input impedance of inZ� = 

75 - j75 Ω. Calculate the load impedance. 
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Example  ☼ 
A generator with VOC=10 V and Rth=50 Ω is used to test various transmission line/load 
combinations. The generator is connected to the input to the line and the input voltage is 
observed on an oscilloscope. The oscilloscope patterns for several tests are shown below. 
Fill in the table. 

 
 ZC ZL 

what is the load? 

   

   

   

   

 
 
 
 
 
 
 
 

 
 

 
 

 

1 μS 

10 V VOC 

3 V 
5 V 

−5 V 

5 V 

3 V 

4 V 


