
An incremental approach

RCGC Defined
 Each object has associated count of references to it

 Object’s reference count

 When reference to object created

 Pointer copied from one place to another

 assignment

 RC of pointee is incremented

 When reference to object is eliminated

 RC of object pointed-from is decremented

 When RC of object equals zero

 Object is reclaimed

2

Reference counting
 Requires space overhead to store reference count

 Where is this field stored?

 Is it visible at the language level?

 Requires time overhead to increment/decrement RCs

 RCs maintained in real-time

 RCGC is incremental

 UNIX file system uses reference counting for files and
directories

3

Reclaiming objects with RCGC
 When an object is reclaimed

 Its pointer fields are examined

 RC of any object it hold pointers to is decremented

 Why?

 Reclaiming one object may

 Lead to the transitive decrementing of RCs

 Lead to reclaiming of other objects

 How?

4

Reference counting example

5

Root set
Heap space

1

111

1 1

2

2

1

Reference counting example

6

Root set
Heap space

1

101

1 1

2

2

1

Reference counting example

7

Root set
Heap space

1

101

1 0

2

1

1

Reference counting example

8

Root set
Heap space

1

11

1

2

1

1

RCGC strengths
 Incremental nature of operation

 Updating RCs interleaved with program execution

 Can easily be made completely real-time

 Transitive reclamation of large data structures can be deferred

 Keep list of freed object s whose RCs have not been processed

 Good for interactive applications (good response time

 Easy to implement

 Can reuse freed storage immediately

 Good spatial locality

 Access pattern to virtual memory no worse than
application

9

Reference counting weaknesses
 RC takes up space

 A whole machine word

 Ability to represent any # of pointers the system can
accommodate

 RC consumes time

 Updating pointer to point to a new object

 Check to see that it is not a reference to self

 Decrement RC of old pointee, possibly deleting it

 Update pointer with address of new pointee

 Increment RC of new pointee

10

Reference count weaknesses
 One missed RC update can result in dangling pointers

or memory leak

 Cannot reclaim circular structures

11

Reference counting example

12

Root set
Heap space

1

11

1

2

1

1

Reference counting example

13

Root set
Heap space

1

11

1

1

1

1

Reference counting example

14

Root set
Heap space

1

11

1

1

1

1

Memory
leak

RCGC algorithm: RC allocation
allocate() {

newCell = freeList

freeList = next(freelist)

return newCell

}

new(){

if (freeList == NULL){

abort “Memory exhausted”

}

newCell = allocate()

RC(newCell) = 1

return newCell

}
15

RCGC algorithm: Updating pointers
free(N) {

next(N) = freeList

freeList = N

}

delete(T){

RC(T) = RC(T) - 1

if RC(T) == 0

for U in children(T)

delete(*U)

free(T)

}

16

update(R, S){

RC(S) = RC(S) + 1

delete(*R)

*R = S

}

An example

17

left rightn

Reference count

left rightx

left right1 left right1

Root
R

T S

An example

18

left rightx

left right0 left right2

Root
R

T S

next0
freeList

An example

19

left rightx

0 left right1

Root
R

S

next0
freeList

