
An incremental approach

RCGC Defined
 Each object has associated count of references to it

 Object’s reference count

 When reference to object created

 Pointer copied from one place to another

 assignment

 RC of pointee is incremented

 When reference to object is eliminated

 RC of object pointed-from is decremented

 When RC of object equals zero

 Object is reclaimed

2

Reference counting
 Requires space overhead to store reference count

 Where is this field stored?

 Is it visible at the language level?

 Requires time overhead to increment/decrement RCs

 RCs maintained in real-time

 RCGC is incremental

 UNIX file system uses reference counting for files and
directories

3

Reclaiming objects with RCGC
 When an object is reclaimed

 Its pointer fields are examined

 RC of any object it hold pointers to is decremented

 Why?

 Reclaiming one object may

 Lead to the transitive decrementing of RCs

 Lead to reclaiming of other objects

 How?

4

Reference counting example

5

Root set
Heap space

1

111

1 1

2

2

1

Reference counting example

6

Root set
Heap space

1

101

1 1

2

2

1

Reference counting example

7

Root set
Heap space

1

101

1 0

2

1

1

Reference counting example

8

Root set
Heap space

1

11

1

2

1

1

RCGC strengths
 Incremental nature of operation

 Updating RCs interleaved with program execution

 Can easily be made completely real-time

 Transitive reclamation of large data structures can be deferred

 Keep list of freed object s whose RCs have not been processed

 Good for interactive applications (good response time

 Easy to implement

 Can reuse freed storage immediately

 Good spatial locality

 Access pattern to virtual memory no worse than
application

9

Reference counting weaknesses
 RC takes up space

 A whole machine word

 Ability to represent any # of pointers the system can
accommodate

 RC consumes time

 Updating pointer to point to a new object

 Check to see that it is not a reference to self

 Decrement RC of old pointee, possibly deleting it

 Update pointer with address of new pointee

 Increment RC of new pointee

10

Reference count weaknesses
 One missed RC update can result in dangling pointers

or memory leak

 Cannot reclaim circular structures

11

Reference counting example

12

Root set
Heap space

1

11

1

2

1

1

Reference counting example

13

Root set
Heap space

1

11

1

1

1

1

Reference counting example

14

Root set
Heap space

1

11

1

1

1

1

Memory
leak

RCGC algorithm: RC allocation
allocate() {

newCell = freeList

freeList = next(freelist)

return newCell

}

new(){

if (freeList == NULL){

abort “Memory exhausted”

}

newCell = allocate()

RC(newCell) = 1

return newCell

}
15

RCGC algorithm: Updating pointers
free(N) {

next(N) = freeList

freeList = N

}

delete(T){

RC(T) = RC(T) - 1

if RC(T) == 0

for U in children(T)

delete(*U)

free(T)

}

16

update(R, S){

RC(S) = RC(S) + 1

delete(*R)

*R = S

}

An example

17

left rightn

Reference count

left rightx

left right1 left right1

Root
R

T S

An example

18

left rightx

left right0 left right2

Root
R

T S

next0
freeList

An example

19

left rightx

0 left right1

Root
R

S

next0
freeList

