
Optimization for marking and sweeping

Optimization for marking
 Use a marking stack

 Iterative marking

 Minimize stack depth to avoid stack overflow

 Knuth: treat marking stark circularly

 Kurokawa: remove items from stack that have fewer
than 2 unmarked children

 Pointer reversal: eliminate need for marking stack

 Bitmap marking: store in memory if small enough

2

Pointer reversal variable sized nodes
 Each object had 2 additional fields

 n-field: holds # of pointers in object

 i-field: used for marking (large as a pointer)

 Number of sub-trees fully marked

 i-field initialized to 0

 i > 0: Object is marked

 i == n: All children of object are marked

3

Pointer reversal: features
 Recycles 3 variables (current, previous, & next)

 Conceal marking stack in heap objects

 Reduces space overhead

 Time overhead is significant

 Visits each branch node n + 1 times

 Each visit requires additional memory fetches

 Memory fetches are expensive

 Each visit recycles values and modify flags

4

Verdict on pointer reversal
 Use only as a last resort to address stack overflow

 Avoid otherwise

5

Bitmap marking
 Finding bits for bit mapping:

 In object’s header

 In object’s address

 In a separate bitmap table

6

What is bitmap marking
 One bit represents start address of object in heap

 Bitmap size inversely proportional to size of smallest
object

 Bit corresponding to object’s address is found my
shifting bits in object’s address

7

Bitmap marking example
 Consider:

 32-bit architecture

 Smallest object ~ 8 bytes

 Size of bitmap == 1.5 % of heap

 If addr is start address of object obj, then

mark_bit(addr) {

return bitmap[addr >> 3]
}

8

Advantages of bitmap marking
 Space overhead is negligible

 Bitmap mostly like can be stored in RAM

 # of bitmaps decreases with larger objects

 Heap does not have to be contiguous

 Objects do not have to be touched when GC runs

9

Disadvantages of bitmap marking
 Mapping object’s address to bit in bitmap more

expensive than if bitmap were stored in object

10

Optimization for sweeping
 Lazy sweeping

 Problem:

 Sweeping phase expensive

 How do we solve it?

 Pre-fetch pages or cache lines

 Not likely to affect virtual memory behavior

 Problem:

 Sweep causes long delay in user program

 How do we solve it?

 Run sweep phase in parallel with mutator

11

Hughe’s lazy sweep algorithm
 Executes sweeper and mutator in parallel

 Do a fixed amount of sweeping at each allocation

 Transfers cost of sweep phase to allocation

 No free-list manipulations necessary

 Performance reduced by bitmaps

 Performs better when mark bit stored in object

12

Boehm-Demers-Weiser sweeper
 2-level allocation:

 low-level: acquire 4 KB blocks from OS for single sized
objects

 using malloc or other standard allocator

 high-level: assign individual objects to the blocks

 free-list for each object size, threaded through blocks
allocated for that size

 Each block has separate block header

 Chained together in linked list

 Queues for reclaimable blocks maintained

 Next unswepped block is dequeued and swepped 13

Block header

14

hb_sz

hb_next

hb_descr

hb_map

hb_obj_kind

hb_flags

hb_last_reclaimed

hb_marks

Size of objects in block

next block header to be reclaimed

(atomic, normal)

mark bits

Zorn’s lazy sweeper
 Allocates from a cache vector of n objects for each

common object size

 Uses no free-lists

 When vector is empty, sweep to refill it

 Sweeps and allocates very rapidly

15

Mark-sweep (MSGC) vs RCGC
 MSGC places less overhead on user program

 RCGC reclaims garbage immediately

 RCGC causes user program shorter pause times

 MSGC reclaims cyclic structures naturally

 RCGC is naturally incremental

 RCGC has better locality

 MSGS only touches live objects once if separate
bitmaps

16

