e ———t

sweep GC

d sweeping

Optimization for marking

* Use a marking stack
¢ Iterative marking

* Minimize stack depth to avoid stack overflow
e Knuth: treat marking stark circularly

e Kurokawa: remove items from stack that have fewer
than 2 unmarked children

e Pointer reversal: eliminate need for marking stack

e Bitmap marking: store in memory if small enough

Pointer reversal variable sized nodes

* Each object had 2 additional fields

e n-field: holds # of pointers in object
e i-field: used for marking (large as a pointer)

« Number of sub-trees fully marked
* i-field initialized to o
* i > 0: Object is marked
¢ i == n: All children of object are marked

Pointer reversal: features

* Recycles 3 variables (current, previous, & next)
* Conceal marking stack in heap objects

e Reduces space overhead
* Time overhead is significant
e Visits each branch node n + 1 times
e Each visit requires additional memory fetches

« Memory fetches are expensive

e Each visit recycles values and modify flags

Verdict on pointer reversal

* Use only as a last resort to address stack overflow
* Avoid otherwise

Bitmap marking
* Finding bits for bit mapping:

e In object’s header
e In object’s address
e In a separate bitmap table

=

What is bitmap marking

One bit represents start address of object in heap

Bitmap size inversely proportional to size of smallest
object

Bit corresponding to object’s address is found my
shifting bits in object’s address

Bitmap marking example

* Consider:
e 32-bit architecture
e Smallest object ~ 8 bytes
* Size of bitmap == 1.5 % of heap
o If addr is start address of object obj, then

mark_bit(addr) {
return bitmap[addr >> 3]

/

/ - oL
Advantages of bitmap marking

Space overhead is negligible

Bitmap mostly like can be stored in RAM

of bitmaps decreases with larger objects

Heap does not have to be contiguous

Objects do not have to be touched when GC runs

Disadvantages of bitmap marking

Mapping object’s address to bit in bitmap more
expensive than if bitmap were stored in object

10

= . .

Optimization for sweeping

Lazy sweeping
e Problem:
» Sweeping phase expensive

e How do we solve it?

« Pre-fetch pages or cache lines

 Not likely to affect virtual memory behavior
e Problem:

» Sweep causes long delay in user program
e How do we solve it?

« Run sweep phase in parallel with mutator

11

Hughe’s lazy sweep algorithm

Executes sweeper and mutator in parallel

Do a fixed amount of sweeping at each allocation
Transfers cost of sweep phase to allocation

No free-list manipulations necessary
Performance reduced by bitmaps

e Performs better when mark bit stored in object

12

Boehm-Demers-Weiser sweeper

* 2-level allocation:

e low-level: acquire 4 KB blocks from OS for single sized
objects

- using malloc or other standard allocator

e high-level: assign individual objects to the blocks

* free-list for each object size, threaded through blocks
allocated for that size

* Each block has separate block header
e Chained together in linked list
* Queues for reclaimable blocks maintained

e Next unswepped block is dequeued and swepped =

Block header

—~

hb sz sibmeroirobrecteranlock

hb next o&+—> next block header to be reclaimed
hb descr

hb map o—>

hb obj_kind

(atomic, normal)

hb flags

hb last reclaimed

hb_marks

markahats

14

Zorn’s lazy sweeper

Allocates from a cache vector of n objects for each
common object size

Uses no free-lists
When vector is empty, sweep to refill it
Sweeps and allocates very rapidly

15

P
Mark-sweep (MSGC) vs RCGC

MSGC places less overhead on user program
RCGC reclaims garbage immediately

RCGC causes user program shorter pause times
MSGC reclaims cyclic structures naturally
RCGC is naturally incremental

RCGC has better locality

MSGS only touches live objects once if separate
bitmaps

16

