
Optimization for marking and sweeping

Optimization for marking
 Use a marking stack

 Iterative marking

 Minimize stack depth to avoid stack overflow

 Knuth: treat marking stark circularly

 Kurokawa: remove items from stack that have fewer
than 2 unmarked children

 Pointer reversal: eliminate need for marking stack

 Bitmap marking: store in memory if small enough

2

Pointer reversal variable sized nodes
 Each object had 2 additional fields

 n-field: holds # of pointers in object

 i-field: used for marking (large as a pointer)

 Number of sub-trees fully marked

 i-field initialized to 0

 i > 0: Object is marked

 i == n: All children of object are marked

3

Pointer reversal: features
 Recycles 3 variables (current, previous, & next)

 Conceal marking stack in heap objects

 Reduces space overhead

 Time overhead is significant

 Visits each branch node n + 1 times

 Each visit requires additional memory fetches

 Memory fetches are expensive

 Each visit recycles values and modify flags

4

Verdict on pointer reversal
 Use only as a last resort to address stack overflow

 Avoid otherwise

5

Bitmap marking
 Finding bits for bit mapping:

 In object’s header

 In object’s address

 In a separate bitmap table

6

What is bitmap marking
 One bit represents start address of object in heap

 Bitmap size inversely proportional to size of smallest
object

 Bit corresponding to object’s address is found my
shifting bits in object’s address

7

Bitmap marking example
 Consider:

 32-bit architecture

 Smallest object ~ 8 bytes

 Size of bitmap == 1.5 % of heap

 If addr is start address of object obj, then

mark_bit(addr) {

return bitmap[addr >> 3]
}

8

Advantages of bitmap marking
 Space overhead is negligible

 Bitmap mostly like can be stored in RAM

 # of bitmaps decreases with larger objects

 Heap does not have to be contiguous

 Objects do not have to be touched when GC runs

9

Disadvantages of bitmap marking
 Mapping object’s address to bit in bitmap more

expensive than if bitmap were stored in object

10

Optimization for sweeping
 Lazy sweeping

 Problem:

 Sweeping phase expensive

 How do we solve it?

 Pre-fetch pages or cache lines

 Not likely to affect virtual memory behavior

 Problem:

 Sweep causes long delay in user program

 How do we solve it?

 Run sweep phase in parallel with mutator

11

Hughe’s lazy sweep algorithm
 Executes sweeper and mutator in parallel

 Do a fixed amount of sweeping at each allocation

 Transfers cost of sweep phase to allocation

 No free-list manipulations necessary

 Performance reduced by bitmaps

 Performs better when mark bit stored in object

12

Boehm-Demers-Weiser sweeper
 2-level allocation:

 low-level: acquire 4 KB blocks from OS for single sized
objects

 using malloc or other standard allocator

 high-level: assign individual objects to the blocks

 free-list for each object size, threaded through blocks
allocated for that size

 Each block has separate block header

 Chained together in linked list

 Queues for reclaimable blocks maintained

 Next unswepped block is dequeued and swepped 13

Block header

14

hb_sz

hb_next

hb_descr

hb_map

hb_obj_kind

hb_flags

hb_last_reclaimed

hb_marks

Size of objects in block

next block header to be reclaimed

(atomic, normal)

mark bits

Zorn’s lazy sweeper
 Allocates from a cache vector of n objects for each

common object size

 Uses no free-lists

 When vector is empty, sweep to refill it

 Sweeps and allocates very rapidly

15

Mark-sweep (MSGC) vs RCGC
 MSGC places less overhead on user program

 RCGC reclaims garbage immediately

 RCGC causes user program shorter pause times

 MSGC reclaims cyclic structures naturally

 RCGC is naturally incremental

 RCGC has better locality

 MSGS only touches live objects once if separate
bitmaps

16

