
How do we organize generations or record age?

Goals of generational collection
 Aims of generational GC:

 Reduce cost of dealing with long lived objects

 Reduce garbage collection pause time

 Interactive program test

 Depends on amount of data that survives a collection

 Depends on size of generation

 small more frequent collection

 Large less frequent collection

 Achievable by segregating objects by age

2

What policies to use for promotion?
 Multiple generations

 Promotion threshold

 Adaptive tenuring

3

Dilema for fixed promotion policies
 Consider small youngest generation

 Shortens interval between scavenges

 Shortens pause length

 Consider larger generations

 Reduces promotion rates

 Gives objects longer to die

 Scavenges less often copying overhead is reduced

 But pause length is increased

 So how does fixed promotion policies handle this
dilema?

4

Adaptive tenuring
 Tuning generational collection is complex and time

consuming

 What if program has varying allocation rates?

 Fixed policies does not have a way to adjust tenure rate
and prevent collector from thrashing

 Adaptive tenuring:

 Promotion policy that allows promotion criteria to vary

5

How Adaptive tenuring works
 Invoke collector when volume of data allocated since

last collection exceeds an allocation threshold

 Dynamically vary size of semi-spaces if necessary

 Threshold-based policy are more stable than fixed-size
generation policy

6

Two flavors of adaptive tenuring
 Only tenure when it is necessary

 Only tenure as many objects as necessary

 Note:

 Objects’ age given in bytes allocated

 More memory allocated since object creation older object

 Less memory allocated since object creation younger object

 Pause time given as bytes copied

7

Tenure only when necessary
 # of objects that survive a scavenge is used to predict

pause time of next scavenge

 Definition of pause time

 Time measured in bytes

 If few objects survive a scavenge (less than threshold)

 Probably not worth promoting them

 GC pause less than max acceptable pause

 Consider write-barrier cost

8

Tenure # of objects as necessary
 If survivor size suggests maximum pause time (in

bytes) would be exceeded at next scavenge

 Set age threshold to value to allow excess data to be
promoted

 Survivors scanned to produce table recording volume of
object of each age

 Table then scanned (descending order) to look for
promotion threshold for next minor collection

9

Pioneers of adaptive tenuring
 Ungar and Jackson feedback mediation

 Varies tenure rate depending on volume of survivors

 Barett and Zorn threatening boundary and
remembered set

 Boundary between 2 generations is allowed to move in
either direction

 Set of addresses of objects in old generation that point
objects in younger generations

10

Generation organization
 One semi-space per generation

 Simplest promotion policy:

 Advance all live objects at once

 No need to record object ages

 Use older generation as to_space OR recycle youngest gen.

 Requires multiple generations to filter tenured garbage

 Promotion rate is high

11

Generation organization
 Creation space

 Divide generation into creation space and aging space

 Allocate objects in creation space

 Aging space stores survivors from creation space

 # of survivors of each scavenge expected to be low, both
spaces can be small

 For good performance

 Hold creation space in memory

 Do not swap it out

12

Age recording
 Not necessary for en masse promotion schemes

 All survivors are promoted

 Methods requiring object’s age must

 Record object’s age in its header

 Cost? Manipulated? Copied?

 Segregate objects of different ages within a generation

 Shaw uses buckets

 New bucket aging bucket next generation

 Buckets != generation

13

What about large objects?
 Use large object space

 Use as in copy collector

 Save pause time

14

