
Segregation by age

Why generational garbage collection
 Simple tracing collectors suffer from a # of drawbacks

 All active data must be marked or copy

 Delays caused by GC can be obtrusive

 Deferred RC can be used to smooth out cost of GC

 But has high CPU overhead and cannot reclaim cycles

 Spend much time dealing with long-lived objects

 Repeatedly copies or marks

 Role of GC?

 To reclaim garbage

 Improve locality of system

 Interact well with virtual memory and cache
2

Weak generational hypothesis
 Lifetime of many objects is short

 Studies have shown that as high as 98% of objects can
become garbage between GC cycles

 Weak generational hypothesis

 Most objects die young [Ungar, 1984]

 Insights

 Concentrate efforts on collecting young objects

3

Weak generational hypothesis
 Benefits:

 Collect only a part of the heap

 Pause time diminish

 GC becomes feasible for interactive systems

 “Can I garbage collect while tracking the mouse?”

 Avoid repeatedly processing objects that remain alive

 Overall effort of GC can be reduced

 Locality of the collector can be improved

4

Weak generational hypothesis
 Cost:

 System must be able to distinguish old from young
objects

 Cost associated with storing in old object pointer to
young object can be very expensive

5

Generational strategy
 Segregate objects by age into 2 or more regions in heap

 Each is called a generation

 Number of generations varies with implementation

 One scheme: vary number of generations dynamically

 Collect different generations at different frequencies

 Collect young generation most frequently

 Minor collection

 Collect older generations least frequently

 Major collection

6

Impact of generational GC
 Often used with incremental collection schemes

 Generational techniques have been very successful

 Use is widespread

 All commercial Lisps

 Modula-3, Glasgow Haskell, commercial SmallTalk systems

 For many applications today is collection system of choice

7

How does generational GC work?
 Objects first allocated in youngest generation

 Objects promoted to older generation if they survive
long enough

 Youngest generation collected most frequently

 Weak generational hypothesis

 Promote objects to older generation

 After # of minor collections collect older generation

 Eliminate tenured garbage

 Collect younger generation when you collect older generation

 If more than 2 generations, promote objects to even older
generation

8

A simple example

9

Young

Old

root

set
A

B

C

D

E

F

G

Collect young generation

10

Young

Old

root

set
A

B

F

G

Promote survivors to old generation

11

Young

Old

root

set

A

B

F

G

Tenured
garbage

Allocate new object in young gen.

12

Young

Old

root

set

A

B

F

G

Tenured
garbage

H

Properties of generational GC
 It is possible to collect younger generations without

collecting older generations

 Young objects that survive # of minor collections
promoted to older generation

 Minor collection successfully collect all short-lived
objects in graph

 Inter-generational pointer (from G to B)

 G treated as part of root set for minor collection

 Garbage in older generation (tenured garbage)
cannot be reclaimed by minor collection

13

Generational copy collector

14

Youngest

Oldest

To-space

From-space

From-space

To-space

root

set

.

.

.

Middle

generation(s)

Other generational observations
 Can determine objects’ age by wall-clock-time or by

growth rate due to allocation

 Strong generational hypothesis

 The older an object is the less likely it is to die

 Not generally true

 Advantages:

 Pauses for GC are shorter

 Less data to trace or copy at each collection

 Total volume of data moved throughout entire program
is smaller

 Effective with short-lived objects
15

Inter-generational pointers
 Created in 2 ways

 storing pointers in object (assignment)

 Object containing pointers promoted to older gen.

 Burden on mutator or collector to track

 Promotion: can be easily tracked by collector

 Assignment: need write barrier to trap and record

 Recall most stores are in local variables

 Only need to record old-young pointers, Why?

 They are rare

 They become roots for minor collection

16

