
What about other storage reclamation schemes?

Memory management options
 Manual /explicit memory management

 Strengths?

 Challenges?

 Automated memory management (garbage collection)

 Strengths?

 Challenges?

 Any others?

2

Real-time garbage collection (RTGC)
 Real-time system

 A system that meets real-time requirements.

 Real-time requirements

 As expected, operations must be logically correct

 Additionally, operations must be completed within
deadline

 RTGC

 Bounded-time allocation

 Predictable deallocation

 Must be incremental

3

Real-time garbage collection (RTGC)

4

public void f(){

startLaser();

Obj o = new Obj();

stopLaser();

}

public static void main(…){

f();

}

Time
Good for

Real-Time

RTGC strengths and challenges
 Need extra storage

 Store state of application when collector runs

 Application can allocate memory during garbage
collection

 Space-time trade-off

5

RTSJ scoped-memory
 RTSJ – Real-time specification for Java proposed by the

Real-time for Java expert group (RTJEG).

 Semi-manual with scopes

 Scopes: regions of memory

 Scopes: limited life times

 Threads allocate from current scope

 Predictable allocation

 Predictable deallocation

 No dangling pointers

6

RTSJ scoped-memory

7

ScopedMemory

scope = new ScopedMemory(1024);

scope.enter(new Runnable() {

public void run(){

// do some stuff

someObj o = new someObj();

// do some more stuff

someObj s = new someObj();

}

});

// scope is collected (no threads)

RTSJ scoped-memory challenges
 Restrictive memory model

 Difficult to use

 Can leak memory

8

Memory management options
 Manual/explicit memory management

 Automated memory management (GC)

 Real-time garbage collection

 RTSJ scoped-memory

9

Garbage collection design choices
 Stop-the-world

 Incrementality

 Hybrid

 Concurrency

 Parallelism

10

Stop-the-world collectors
 Typically used on uniprocessor systems

 Suspend application

 Run collector from start to finish

 Resume application

11

Stop-the-world collectors
 Execution costs?

 Pause time

 Discovery of live objects (how long does it take?)

 Instruction overhead (per instruction)

 Delay between object death and collection

 Number of collectible objects collected

 Overall execution time

 Worst-case vs average case performance

 frequency

12

Incremental collection
 Interleave GC with application

 Note: for full heap tracing

 Pause time increases with heap size

 Incremental tracing

 Bounded tracing time

 Conservative assumption

 All other objects in heap are live

 Remember pointers from objects in heap

 Add such pointers to root set for tracing

13

Hybrid collection
 Generational collectors

 Collect young objects frequently

 Young objects die quickly

 Example

 Copy collection for young objects

 Non-copy collection for older objects

 Partitioning

 Copy intra-partition incrementally

 Reference count inter-partition

14

Concurrent collection
 Application is called a mutator

 GC regards application as such because it is mutating
the heap

 Mutator and GC function at the same time except
when GC needs info from mutator

 Synchronization

15

Parallel collection
 Concurrency among multiple GC threads

 Load balancing

 Synchronization

 Race condition when tracing

16

