L

oage collection

he Basics

Gar

What is memory management?

® Programs contain
e Objects
e Data

e Occupy memory

* Runtime system must allocate and reclaim memory for
program in an efficient manner

e Why is this important?
e Why is this hard?
e Why is this interesting?

Allocation and Reclamation

* Allocation
e Objects dynamically allocated on HEAP
e malloc(), new()

® Reclamation

e Manual/Explicit
o free()
 delete()

e Automated
» Garbage collection (GC)

. ...

_ Explicit memory management
challenges

* Consumes software development time
e new > allocate storage for new object
e delete = reclaim storage

* Dangling pointers (reclaim too soon)

Foo*p = new Foo();
Foo*q = p;

delete p;
p->DoSomething();
p = NULL;
g->ProcessFoo();

= Statically undecidable

= Problem for developers

. ...

_ Explicit memory management
challenges

* Memory leak (never reclaim)

#include <stdlib.h>
void f (void) {
void* s;
s = malloc(50);
return;

}

int main(void) {
while (1) £();
return O;

\/

~Explicit memory management

pluses

¢ Efficiency can be very high
* Puts the programmer in control

Automated memory management

* Runtime system automatically
e Detects dead objects (garbage detection)
e Reclaims dead objects (garbage reclamation)
e Garbage collection
* Preserves software development time
e Relieves programmer burden

e Less prone to errors

e Utilized by most modern OOP and scripting
languages
e Python, Java, C#, php

Garbage collection challenges

Occurs an unpredictable
times

Duration is unbounded

Performance efficiency
1ssues

public void £ () {
startlLaser () ;
Obj o = new Obj()
stoplaser () ;

}

public static void main(...) {
while (true) £();

}

Time
GC, Bad
for Real-
Time

»
»

/\
Runtime system performs GC

* E.g. Java virtual machine (JVM)

e Software execution engine that executes your Java
programs

e Java interpreter that converts byte code into OS specific
commands

e Handles related tasks
« Memory management (GC implemented in JVM)

« Security
« Multithreading

Major concerns

* Explicit memory management

e Reclaiming objects at the right time
* Garbage collection

e Discriminating live objects from garbage
* Both

e Fast allocation

e Fast reclamation

e Low fragmentation

10

Layout of a program in memory

High address } Command line args and
environment variables

stack

heap

Uninitialized data } Initialized to 0 by exec
(bss)

Initialized data

Read from program file by

L ow address Text / code exec

11

Determining object liveness

Live objects are needed in the computation

e Now or in the future

Prove that an object is not live (dead) and reclaim its
storage

Reclaim dead objects soon, after it is last used

How do we estimate liveness in practice?

e Approximate liveness by reachability from outside the
heap
» Unreachable objects are garbage (reclaim storage)

» Reachable objects are live and must not be reclaimed

12

ldentifying garbage

reference counting ~ heap
(reachability)
An integer is associated — >
with every object, e
summing - 2

e Stack references 1

H:\v

o| || [~

e Heap references

Objects with reference
count of zero are dead

/(

13

Problems with reference counting

« Standard problem is that

stack heap
objects in cycles (and
those touched by such
objects) cannot be - - -
collected (reclaimed) 1 > 0
7 0
* Overhead of counting } f
can be high 1 1
— 0 0
7 5
= /

14

ldentifying garbage

* Tracing (reachability)
* Trace reachability from root set

e Processor registers
e Program stack
e Global variables

* Objects traced are reachable

* All other objects are unreachable (garbage)

15

The marking phase

* To find the dead objects, use the process of calculatus
eliminatus

e Find all live objects
e All others are dead

16

The marking phase

* To discover the dead stack heap
objects, we
— Find live objects

 Pointers from the stack
to the heap make objects =

live \/‘

14

The marking phase

* To discover the dead stack
objects, we
— Find live objects

 Pointers from the stack

to the heap make objects v

live

* These objects make

other objects live

N—

heap

e

18

The sweep phase
» To discover the dead stack heap
objects, we
— Find live objects L -
— Sweep all others away
as dead - /D\
- §
= /

19

Mark and sweep: Tracing example

» To discover the dead stack heap
objects, we
— Find live objects
— Sweep all others away as

)

dead

— Perhaps compact the i > \ >
heap f

— Problem:

— Mark phase can take
unbounded time

~\
/ \

20

