
The Basics

What is memory management?
 Programs contain

 Objects

 Data

 Occupy memory

 Runtime system must allocate and reclaim memory for
program in an efficient manner

 Why is this important?

 Why is this hard?

 Why is this interesting?

2

Allocation and Reclamation
 Allocation

 Objects dynamically allocated on HEAP

 malloc(), new()

 Reclamation

 Manual/Explicit

 free()

 delete()

 Automated

 Garbage collection (GC)

3

Explicit memory management
challenges
 Consumes software development time

 new  allocate storage for new object

 delete  reclaim storage

 Dangling pointers (reclaim too soon)

4

Foo* p = new Foo();

Foo* q = p;

delete p;

p->DoSomething();

p = NULL;

q->ProcessFoo();

 Statically undecidable

 Problem for developers

Explicit memory management
challenges
 Memory leak (never reclaim)

5

#include <stdlib.h>

void f(void){

void* s;

s = malloc(50);

return;

}

int main(void){

while (1) f();

return 0;

}

Explicit memory management
pluses
 Efficiency can be very high

 Puts the programmer in control

6

Automated memory management
 Runtime system automatically

 Detects dead objects (garbage detection)

 Reclaims dead objects (garbage reclamation)

 Garbage collection

 Preserves software development time

 Relieves programmer burden

 Less prone to errors

 Utilized by most modern OOP and scripting
languages

 Python, Java, C#, php

7

Garbage collection challenges
 Occurs an unpredictable

times

 Duration is unbounded

 Performance efficiency
issues

8

public void f(){

startLaser();

Obj o = new Obj();

stopLaser();

}

public static void main(…){

while (true) f();

}

Time
GC, Bad

for Real-

Time

Runtime system performs GC
 E.g. Java virtual machine (JVM)

 Software execution engine that executes your Java
programs

 Java interpreter that converts byte code into OS specific
commands

 Handles related tasks

 Memory management (GC implemented in JVM)

 Security

 Multithreading

9

Major concerns
 Explicit memory management

 Reclaiming objects at the right time

 Garbage collection

 Discriminating live objects from garbage

 Both

 Fast allocation

 Fast reclamation

 Low fragmentation

10

Layout of a program in memory

11

stack

heap

Uninitialized data
(bss)

Initialized data

Text / code

High address

Low address

Command line args and

environment variables

Initialized to 0 by exec

Read from program file by

exec

Determining object liveness
 Live objects are needed in the computation

 Now or in the future

 Prove that an object is not live (dead) and reclaim its
storage

 Reclaim dead objects soon, after it is last used

 How do we estimate liveness in practice?

 Approximate liveness by reachability from outside the
heap

 Unreachable objects are garbage (reclaim storage)

 Reachable objects are live and must not be reclaimed

12

Identifying garbage

13

 reference counting
(reachability)

 An integer is associated
with every object,
summing

 Stack references

 Heap references

 Objects with reference
count of zero are dead

stack heap

1

2

2

1

11

0

00

0

Problems with reference counting

14

• Standard problem is that
objects in cycles (and
those touched by such
objects) cannot be
collected (reclaimed)

• Overhead of counting
can be high

stack heap

1

2

1

1

11

0

00

0

Identifying garbage
 Tracing (reachability)

 Trace reachability from root set

 Processor registers

 Program stack

 Global variables

 Objects traced are reachable

 All other objects are unreachable (garbage)

15

The marking phase
 To find the dead objects, use the process of calculatus

eliminatus

 Find all live objects

 All others are dead

16

The marking phase

17

• To discover the dead
objects, we
– Find live objects

stack heap

• Pointers from the stack
to the heap make objects
live

The marking phase

18

• To discover the dead
objects, we
– Find live objects

• Pointers from the stack
to the heap make objects
live

• These objects make
other objects live

stack heap

The sweep phase

19

• To discover the dead
objects, we
– Find live objects
– Sweep all others away

as dead

stack heap

Mark and sweep: Tracing example

20

• To discover the dead
objects, we
– Find live objects
– Sweep all others away as

dead
– Perhaps compact the

heap
– Problem:

– Mark phase can take
unbounded time

stack heap

