
The Basics

What is memory management?
 Programs contain

 Objects

 Data

 Occupy memory

 Runtime system must allocate and reclaim memory for
program in an efficient manner

 Why is this important?

 Why is this hard?

 Why is this interesting?

2

Allocation and Reclamation
 Allocation

 Objects dynamically allocated on HEAP

 malloc(), new()

 Reclamation

 Manual/Explicit

 free()

 delete()

 Automated

 Garbage collection (GC)

3

Explicit memory management
challenges
 Consumes software development time

 new allocate storage for new object

 delete reclaim storage

 Dangling pointers (reclaim too soon)

4

Foo* p = new Foo();

Foo* q = p;

delete p;

p->DoSomething();

p = NULL;

q->ProcessFoo();

 Statically undecidable

 Problem for developers

Explicit memory management
challenges
 Memory leak (never reclaim)

5

#include <stdlib.h>

void f(void){

void* s;

s = malloc(50);

return;

}

int main(void){

while (1) f();

return 0;

}

Explicit memory management
pluses
 Efficiency can be very high

 Puts the programmer in control

6

Automated memory management
 Runtime system automatically

 Detects dead objects (garbage detection)

 Reclaims dead objects (garbage reclamation)

 Garbage collection

 Preserves software development time

 Relieves programmer burden

 Less prone to errors

 Utilized by most modern OOP and scripting
languages

 Python, Java, C#, php

7

Garbage collection challenges
 Occurs an unpredictable

times

 Duration is unbounded

 Performance efficiency
issues

8

public void f(){

startLaser();

Obj o = new Obj();

stopLaser();

}

public static void main(…){

while (true) f();

}

Time
GC, Bad

for Real-

Time

Runtime system performs GC
 E.g. Java virtual machine (JVM)

 Software execution engine that executes your Java
programs

 Java interpreter that converts byte code into OS specific
commands

 Handles related tasks

 Memory management (GC implemented in JVM)

 Security

 Multithreading

9

Major concerns
 Explicit memory management

 Reclaiming objects at the right time

 Garbage collection

 Discriminating live objects from garbage

 Both

 Fast allocation

 Fast reclamation

 Low fragmentation

10

Layout of a program in memory

11

stack

heap

Uninitialized data
(bss)

Initialized data

Text / code

High address

Low address

Command line args and

environment variables

Initialized to 0 by exec

Read from program file by

exec

Determining object liveness
 Live objects are needed in the computation

 Now or in the future

 Prove that an object is not live (dead) and reclaim its
storage

 Reclaim dead objects soon, after it is last used

 How do we estimate liveness in practice?

 Approximate liveness by reachability from outside the
heap

 Unreachable objects are garbage (reclaim storage)

 Reachable objects are live and must not be reclaimed

12

Identifying garbage

13

 reference counting
(reachability)

 An integer is associated
with every object,
summing

 Stack references

 Heap references

 Objects with reference
count of zero are dead

stack heap

1

2

2

1

11

0

00

0

Problems with reference counting

14

• Standard problem is that
objects in cycles (and
those touched by such
objects) cannot be
collected (reclaimed)

• Overhead of counting
can be high

stack heap

1

2

1

1

11

0

00

0

Identifying garbage
 Tracing (reachability)

 Trace reachability from root set

 Processor registers

 Program stack

 Global variables

 Objects traced are reachable

 All other objects are unreachable (garbage)

15

The marking phase
 To find the dead objects, use the process of calculatus

eliminatus

 Find all live objects

 All others are dead

16

The marking phase

17

• To discover the dead
objects, we
– Find live objects

stack heap

• Pointers from the stack
to the heap make objects
live

The marking phase

18

• To discover the dead
objects, we
– Find live objects

• Pointers from the stack
to the heap make objects
live

• These objects make
other objects live

stack heap

The sweep phase

19

• To discover the dead
objects, we
– Find live objects
– Sweep all others away

as dead

stack heap

Mark and sweep: Tracing example

20

• To discover the dead
objects, we
– Find live objects
– Sweep all others away as

dead
– Perhaps compact the

heap
– Problem:

– Mark phase can take
unbounded time

stack heap

